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Abstract

Language support for threads was introduced at a late stage in the Python
development process. To accomodate that the majority of Python code
was not thread-safe, an approach using a global interpreter lock was
introduced. This lock has remained a major scalability bottleneck when
executing multi-threaded Python programs on multi-processor architectures.
A common workaround to achieve parallelism on such architectures is to use
multiple processes instead of multiple threads. Typically, these types of
applications use ad-hoc shared memory or messaging APIs for interprocess
communication.
This thesis presents POSH, an extension to Python that combines the
advantages of the shared memory programming model in a multi-threaded
Python program with the scalability of a multi-process Python program.
POSH allows Python objects to be transparently shared across multiple
processes using shared memory. Shared objects are indistinguishable from
regular objects, as seen by Python code. The POSH system is implemented
as an extension module and requires no changes to the Python runtime.



Acknowledgements

The author would like to thank his supervisors, Åge Kvalnes and Kjetil
Jacobsen, for all their invaluable technical and moral support. This thesis
has bene�ted greatly from their insights and contributions.

ii



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Method and approach . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Python internals 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Python execution environment . . . . . . . . . . . . . . 4

2.2.1 Interpretation of Python code . . . . . . . . . . . . . 4
2.2.2 Threading model . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Object model . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Python objects . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1 Representation of objects . . . . . . . . . . . . . . . . 5
2.3.2 Fixed-size vs. variable-size objects . . . . . . . . . . . 6
2.3.3 Extending object structures . . . . . . . . . . . . . . . 7
2.3.4 Referencing objects from C code . . . . . . . . . . . . 7

2.4 Python types . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

iii



CONTENTS iv

2.4.1 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Built-in vs. user-de�ned types . . . . . . . . . . . . . 10
2.4.3 Meta-types . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.4 The Don Beaudry hook . . . . . . . . . . . . . . . . . 12
2.4.5 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Object dictionaries . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Attribute lookup methods . . . . . . . . . . . . . . . . 16
2.5.3 Attribute descriptors . . . . . . . . . . . . . . . . . . 16
2.5.4 Wrapper descriptors . . . . . . . . . . . . . . . . . . . 17
2.5.5 Attribute lookup on types . . . . . . . . . . . . . . . . 18

2.6 Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.1 Python reference counting . . . . . . . . . . . . . . . 21
2.6.2 Cyclic garbage collection . . . . . . . . . . . . . . . . 22

3 Design and implementation 23
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Shared memory management . . . . . . . . . . . . . . . . . . 24

3.2.1 Globally shared data . . . . . . . . . . . . . . . . . . 24
3.2.2 Management of shared memory regions . . . . . . . . 25
3.2.3 Fine-grained shared memory management . . . . . . . 29
3.2.4 The SharedHeap type . . . . . . . . . . . . . . . . . . 32

3.3 Shareable and shared types . . . . . . . . . . . . . . . . . . . 34
3.3.1 Declaration of shareable types . . . . . . . . . . . . . 34
3.3.2 Creation of shared objects . . . . . . . . . . . . . . . 35
3.3.3 The SharedType meta-type . . . . . . . . . . . . . . . 36



CONTENTS v

3.4 Shared objects . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Representation of shared objects . . . . . . . . . . . . 38
3.4.2 Overriding allocation of shared objects . . . . . . . . 40
3.4.3 Attribute lookup for shared objects . . . . . . . . . . 41

3.5 Shared container objects . . . . . . . . . . . . . . . . . . . . 42
3.5.1 Memory handles . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Shared lists and tuples . . . . . . . . . . . . . . . . . 45
3.5.3 Shared dictionaries . . . . . . . . . . . . . . . . . . . 50

3.6 Proxy objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.1 Creation of proxy objects . . . . . . . . . . . . . . . . 52
3.6.2 Creation of custom-tailored proxy types . . . . . . . . 53

3.7 Garbage collection of shared objects . . . . . . . . . . . . . . 56
3.8 Synchronizing access to shared objects . . . . . . . . . . . . . 58

3.8.1 Synchronization policies . . . . . . . . . . . . . . . . . 59
3.8.2 The Monitor type. . . . . . . . . . . . . . . . . . . . . 61
3.8.3 Applying synchronization to shared objects . . . . . . 62

3.9 Synchronization primitives . . . . . . . . . . . . . . . . . . . 64
3.9.1 Spin locks . . . . . . . . . . . . . . . . . . . . . . . . 64
3.9.2 The sleep table . . . . . . . . . . . . . . . . . . . . . . 65
3.9.3 Shared locks . . . . . . . . . . . . . . . . . . . . . . . 66

3.10 Process Management . . . . . . . . . . . . . . . . . . . . . . 67
3.10.1 The process table . . . . . . . . . . . . . . . . . . . . 67
3.10.2 Process creation . . . . . . . . . . . . . . . . . . . . . 69
3.10.3 Process termination . . . . . . . . . . . . . . . . . . . 70
3.10.4 Abnormal process termination . . . . . . . . . . . . . 70



CONTENTS vi

3.11 The POSH programming interface . . . . . . . . . . . . . . . 71
3.11.1 Declaration of shareable types . . . . . . . . . . . . . 71
3.11.2 Sharing of objects . . . . . . . . . . . . . . . . . . . . 72
3.11.3 Process management . . . . . . . . . . . . . . . . . . 73

3.12 Portability issues . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Discussion and conclusion 77
4.1 Summary of thesis . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Making shared objects interchangeable with regular
objects . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Making shared objects accessible to concurrent pro-
cesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Minimizing constraints on shareable types . . . . . . . 80
4.2.4 Minimizing changes to the Python runtime . . . . . . 81

4.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Source listing 84
A.1 Address.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.2 Address.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.3 Globals.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.4 Globals.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.5 Handle.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.6 Handle.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.7 Lock.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.8 Lock.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



CONTENTS vii

A.9 LockObject.h . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.10 LockObject.c . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.11 Monitor.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.12 Monitor.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.13 Process.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.14 Process.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.15 Proxy.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.16 Proxy.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.17 SemSet.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.18 SemSet.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.19 Semaphore.h . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.20 Semaphore.c . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.21 SharedAlloc.h . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.22 SharedAlloc.c . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.23 SharedDictBase.h . . . . . . . . . . . . . . . . . . . . . . . . 126
A.24 SharedDictBase.c . . . . . . . . . . . . . . . . . . . . . . . . 127
A.25 SharedHeap.h . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.26 SharedHeap.c . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.27 SharedListAndTuple.h . . . . . . . . . . . . . . . . . . . . . . 156
A.28 SharedListAndTuple.c . . . . . . . . . . . . . . . . . . . . . . 157
A.29 SharedObject.h . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.30 SharedObject.c . . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.31 SharedRegion.h . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.32 SharedRegion.c . . . . . . . . . . . . . . . . . . . . . . . . . . 186
A.33 Spinlock.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



CONTENTS viii

A.34 Spinlock.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.35 _core.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.36 init_core.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
A.37 share.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.38 share.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
A.39 _proxy.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
A.40 _verbose.py . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.41 __init__.py . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



List of Figures

2.1 De�nition of the PyObject data structure. . . . . . . . . . . 5
2.2 De�nition of the PyVarObject data structure. . . . . . . . . 6
2.3 Object structure of int objects. . . . . . . . . . . . . . . . . 7
2.4 Object structure of long objects. . . . . . . . . . . . . . . . 7
2.5 A sample type hierarchy. . . . . . . . . . . . . . . . . . . . . 9
2.6 Inheritance graph for the document type. . . . . . . . . . . . 9
2.7 Object structure of a type subtyping the built-in list type. 10
2.8 Syntax of the class statement. . . . . . . . . . . . . . . . . . 10
2.9 Creating a new type by calling the meta-type. . . . . . . . . 12
2.10 An interpreter session illustrating the di�erence between

types and classes. . . . . . . . . . . . . . . . . . . . . . . . . 14
2.11 Interpreter session illustrating the nature of descriptors. . . 19

3.1 Structure of the globally shared data. . . . . . . . . . . . . . 24
3.2 Low-level interface for management of shared memory regions. 26
3.3 De�nition of the region table. . . . . . . . . . . . . . . . . . 26
3.4 Higher-level interface for management of shared memory

regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Interface supported by a heap object h. . . . . . . . . . . . . 29
3.6 Interface for creating and accessing Address objects. . . . . 29

ix



LIST OF FIGURES x

3.7 Low-level interface used by shared objects to allocate mem-
ory from their type's data heap. . . . . . . . . . . . . . . . . 30

3.8 De�nition of the object structure for SharedHeap objects,
and the root data structure. . . . . . . . . . . . . . . . . . . 31

3.9 De�nition of the page data structure used by SharedHeap
objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 Implementation of the SharedType meta-type. . . . . . . . . 36
3.11 De�nition of the SharedObject structure, and related

macros and functions. . . . . . . . . . . . . . . . . . . . . . . 38
3.12 Allocation functions for the tp_alloc and tp_free method

slots of shared types. . . . . . . . . . . . . . . . . . . . . . . 40
3.13 De�nition of the SharedMemHandle structure, and the re-

lated mapping functions. . . . . . . . . . . . . . . . . . . . . 42
3.14 De�nition of the attachment map. . . . . . . . . . . . . . . . 43
3.15 Object structures of the SharedListBase and

SharedTupleBase types. . . . . . . . . . . . . . . . . . . . . 45
3.16 The vector_item function. . . . . . . . . . . . . . . . . . . . 46
3.17 The vector_ass_item function. . . . . . . . . . . . . . . . . 47
3.18 Excerpt of the SharedTuple type's implementation. . . . . . 47
3.19 Excerpt of the SharedList type's implementation. . . . . . 48
3.20 Implementation of the SharedDict type. . . . . . . . . . . . 49
3.21 Object structure of the SharedDictBase type, and de�niton

of a hash table entry. . . . . . . . . . . . . . . . . . . . . . . 49
3.22 De�nition of the MakeProxy function. . . . . . . . . . . . . . 52
3.23 Object structure of Proxy objects. . . . . . . . . . . . . . . . 53
3.24 Interpreter session illustrating usage of the _call_method

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.25 Continuation the interpreter session in Figure 3.24. . . . . . 54
3.26 Implementation of the ProxyMethod and

ProxyMethodDescriptor types. . . . . . . . . . . . . . . . . 55



LIST OF FIGURES xi

3.27 Implementation of the MakeProxyType function. . . . . . . . 56
3.28 Low-level interface used for garbage collection of shared

objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.29 Interface supported by a synchronization policy object synch. 58
3.30 Implementation of the built-in Monitor type's enter and

leave methods. . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.31 Interpreter session using POSH in verbose mode. . . . . . . 60
3.32 Low-level interface for adhering to the synchronization pro-

tocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.33 Utility functions that mirror the Python/C API, while

adhering to the synchronization protocol. . . . . . . . . . . . 62
3.34 The acquire and release functions used to implement spin

locks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.35 Low-level interface for accessing spin locks. . . . . . . . . . . 65
3.36 De�nition of the sleep table. . . . . . . . . . . . . . . . . . . 65
3.37 Low-level interface for accessing shared locks. . . . . . . . . 66
3.38 De�nition of the process table. . . . . . . . . . . . . . . . . . 68
3.39 De�nition of a process bitmap, and macros to modify it. . . 68
3.40 Example of a shareable user-de�ned type. . . . . . . . . . . 72
3.41 Interpreter session involving a shared and non-shared object. 73
3.42 Interpreter session involving shared container objects. . . . . 73
3.43 Implementation of the forkcall method. . . . . . . . . . . . 74
3.44 A multi-process program that performs a matrix multiplica-

tion using POSH. . . . . . . . . . . . . . . . . . . . . . . . . 76



Chapter 1

Introduction

1.1 Background

Python is a dynamically typed, high-level programming language that is
used for a wide range of applications. Python has evolved from a simple
scripting language to a full-�edged object oriented programming language.
Language support for threads was introduced at a late stage in the Python
development process. At this point, the majority of Python code was not
thread-safe. As a consequence, an approach using very coarse grained locking
was adopted. In fact, the approach was to use a single global lock, known as
the global interpreter lock , to serialize execution of byte codes. To this day,
this lock has remained a major bottleneck when executing multi-threaded
Python programs on multi-processor architectures. A common workaround
to achieve parallelism on multi-processor architectures is to use multiple
processes instead of threads. In such multi-process applications, inter-process
communication is performed using ad-hoc shared memory or a messaging
API.
POSH is an extension to Python that attempts to address the above problems
by enabling placement of Python objects in shared memory. The design and
implementation of POSH is the subject of this thesis.

1.2 Problem de�nition

The goal of this thesis is to extend the Python programming language to
support placement of objects in shared memory. To the extent possible, the

1



CHAPTER 1. INTRODUCTION 2

support should satisfy the following requirements.

• Objects in shared memory should be interchangeable with regular
objects.
• Objects in shared memory should be accessible to multiple concurrent
processes.
• Constraints on which kind of objects that can be placed in shared
memory should be minimized.
• The support should require minimal changes to the Python runtime.

1.3 Method and approach

The problem will be investigated through researching existing Python
documentation. There are no references on the implementation of the Python
runtime, so a thorough analysis of the Python source code is also required.
Based on this research and analysis, an actual design and implementation
will be performed.

1.4 Limitations

Due to time constraints, we have had to omit performance evaluation of
POSH abstractions and mechanisms.

1.5 Outline

Chapter 2 describes important abstractions, data-structures and algo-
rithms used internally in the Python runtime environment. This
chapter provides a background for understanding the design and
implementation of POSH.

Chapter 3 describes the design and implementation of POSH.
Chapter 4 concludes the thesis. An outline for future work is provided.
Appendix A contains a complete listing of the source code for the POSH

system.



Chapter 2

Python internals

This chapter provides a background for understanding the design and imple-
mentation of POSH. Important abstractions, data-structures and algorithms
used internally in the Python runtime environment are presented.

2.1 Introduction

Python is a dynamically typed, high-level programming language that is used
for a wide range of applications. It is maintained as an open source project,
continuously evolving to include new language features as well as libraries.
Its popularity has increased steadily as it has become a powerful tool for
both scripting, functional programming and object-oriented programming.
This chapter is not intended as an introduction to the Python language,
but rather as a view behind the scenes, examining the implementation of
the Python interpreter and runtime. A basic understanding of the topics
treated in this chapter is required in order to understand the implementation
of POSH.
There exist no o�cial resources describing the internals of Python. The
Python documentation is targeted at programmers using the language, and
also includes a description of the Python/C API, which is for authors of
extension modules. However, this is a high-level API that only provides
limited insight into low-level implementation details. In addition, the
documentation tends to be outdated, since Python is an open source project
under continuous development. The only real way of gaining a thorough
understanding of Python's internals is by examining the source code. The
standard distribution of Python currently has approximately 275000 lines

3
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of C code, in addition to the modules that are implemented in Python.
This chapter primarily focuses on the implementation details of particular
relevance with regard to POSH.

2.2 The Python execution environment

2.2.1 Interpretation of Python code

Python is an interpreted language, which means that the code is parsed
and executed at run-time, without any prior compilation. However,
Python source code is transformed to an intermediate format known as
byte-codes before interpretation. The byte-codes are cached on disk to
optimize repeated execution of the same source code. They also speed up
interpretation in general given the presence of looping constructs. Byte-codes
may be viewed as instructions for a stack-based virtual machine known as
the byte-code interpreter. When the Python interpreter executes a program,
the byte-code interpreter is its main loop, repeatedly executing byte-codes
from the instruction stream. Each byte-code may push or pop objects o�
the interpreter's operand stack.
Python also allows extension modules 1to be implemented in C, using the
Python/C API. When Python code invokes a function de�ned in an extension
module, the call is transformed into a single byte-code in the instruction
stream. Since the extension module may perform calculations of arbitrary
duration, the time to execute a single byte code may vary greatly.

2.2.2 Threading model

Language support for threads was introduced at a late stage in the Python
development process. At that point, the majority of Python code was
not thread-safe. As a consequence, an approach using very coarse grained
locking was adopted. In fact, the approach was to use a single global lock
to serialize execution of byte codes. To this day, the lock has remained
a major bottleneck when executing multi-threaded Python programs on
multi-processor architectures, since the contention on the lock all but
neutralizes the performance gain of multiple processors. Given the presence
of extension modules, the execution time of a single byte code is actually
unbounded, so the degree of parallelism achieved in multithreaded programs
may be unsatisfactory. Extension modules may voluntarily release the global

1Also known as built-in modules .
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typedef struct {
PyTypeObject* ob type;
int ob refcnt;

} PyObject;

Figure 2.1: De�nition of the PyObject data structure.

interpreter lock while executing thread-safe code, but not all modules do this,
as it requires extra vigilance with regard to thread safety.
A common workaround employed by Python programs to achieve parallelism
on multi-processor architectures is to use multiple processes instead of
threads. However, such multi-process applications require some form of inter-
process communication, and cannot employ the convenient shared memory
programming model of multi-threaded programs.

2.2.3 Object model

As described in Section 2.2.1 the entries on the byte-code interpreter's
operand stack are all objects. In fact, all values in the Python language are
objects, including entities such as functions, types and even stack frames.
Being able to manipulate these objects at run-time, just like any other
object, enables programming paradigms that are in many cases inapplicable
in statically typed languages.
Being a dynamically typed language, Python treats all objects generically,
having no a priori information about their types. In general, the emphasis
in a Python program does not lie on what type an object has, but rather on
what interface the object supports. Objects that support the same interface
are generally interchangeable. Explicitly checking the types of objects
is considered bad programming practice, since it defeats the genericness
inherent in the language.

2.3 Python objects

2.3.1 Representation of objects

All Python objects have a common physical representation, de�ned by the
PyObject C structure shown in �gure 2.1. The structure only de�nes two
�elds, which are common to all objects. They are the type pointer (ob_type)
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typedef struct {
PyTypeObject* ob type;
int ob refcnt;
int ob size;

} PyVarObject;

Figure 2.2: De�nition of the PyVarObject data structure.

and the reference count (ob_refcnt). The reference count is used for garbage
collection, as described in Section 2.6. The type pointer points to the object's
type object , which is described in Section 2.4.

2.3.2 Fixed-size vs. variable-size objects

Python distinguishes between two classes of objects, according to their
requirements with respect to memory allocation.

Fixed-size objects are uniformly sized, meaning that all objects of a given
type have the exact same size in bytes. Examples of �xed-size objects
include integers and �oats.

Variable-size objects are special in that objects of the same type may
di�er in size. Each variable-size object contains an extra �eld that
de�nes its size. This is de�ned by the PyVarObject C structure shown
in �gure 2.2, which extends the PyObject structure with a �eld named
ob_size. The ob_size �eld is initialized when the object is created,
and subsequently never changes. Examples of variable-size objects
include strings (which contain a variable number of characters) and
tuples (which contain a variable number of references to other objects).

Note that referring to an object as variable-size does not imply that the
object's size may actually change. It simply states that separate objects
of that type may di�er in size. Every Python object keeps its initial
size throughout its lifetime; once it is allocated, it stays the same size
until it is deallocated. If objects were to change size throughout their
lifetime, the Python memory allocator would need the ability to move them,
which would be di�cult at best, since objects are referenced throughout the
Python runtime using direct pointers. Instead, mutable objects such as lists
and dictionaries �grow� by allocating additional memory in auxiliary data
structures, not by resizing the memory region in which they are allocated.
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typedef struct {
PyObject HEAD
long ob ival;

} PyIntObject;

Figure 2.3: Object structure of int objects.

typedef struct {
PyObject VAR HEAD
digit ob digit[1];

} PyLongObject;

Figure 2.4: Object structure of long objects.

Thus, lists and dictionaries are actually classi�ed as �xed-size, since their
objects always have a uniform size.

2.3.3 Extending object structures

Depending on its type, an object may require data �elds that are not de�ned
by PyObject . For example, integer objects need to store their actual value as
a C variable of type long. Python generally de�nes a data structure for each
type of object, known as its object structure , that extends the basic PyObject
or PyVarObject data structures with more �elds. As an example, �gure 2.3
shows the object structure of integer objects. The PyObject_HEAD macro
de�nes the ob_type and ob_refcnt �elds from PyObject . The ob_ival
�eld is speci�c to integer objects. Figure 2.4 shows the data structure of
long integer objects (objects of type long). The PyObject_VAR_HEAD macro
de�nes the �elds from PyVarObject . The structure declares that the object
contains an array holding 1 digit. In reality, the number of digits is stored
in the ob_size �eld, and the allocation of the object will reserve su�cient
memory to hold that many digits. This approach to implementing variable-
sized arrays is common in C, since the language does not enforce out-of-
bounds checks on array indexes.

2.3.4 Referencing objects from C code

The Python runtime, which is implemented in C, views all Python objects as
variables of type PyObject* . Only when implementing operations speci�c to
a particular type of objects, are the pointers cast to more speci�c types such
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as PyListObject* . This casting is generally only done after checking the
object's type explicitly (by examining its type pointer), or in places where
the type of the object can be logically deduced (in which case an assertion
prior to the cast would be appropriate).

2.4 Python types

As noted in Section 2.3.1, every object contains a pointer to its type , which
is actually a regular Python object known as a type object . The type object
contains a collection of function pointers referred to as method slots , which
de�ne the e�ects of various generic operations on objects of that type. When
the interpreter executes a byte-code that performs some generic operation,
such as addition, it examines the type object of the operand(s) and calls
one of the functions pointed to by its method slots. For example, when a
statement such as �print x� is compiled into byte-codes, the PRINT_ITEM
byte-code is generated. This byte-code operates on a single operand, which is
popped o� the top of the interpreter's operand stack. When the PRINT_ITEM
byte-code is interpreted, the type object of the operand is examined. In
this particular case, a method slot named tp_print is invoked, and it is
the function pointed to by this method slot that de�nes the actual e�ect of
printing the object.
The type object contains other vital information about an object, such as the
number of bytes it occupies in memory. For �xed-size objects, this equals
the size of the object's data structure. For variable-size objects, the type
object de�nes the size in bytes of each item in the object, as well as its base
size. The actual size of an object may be calculated using this information
in combination with the ob_size �eld from the object.

2.4.1 Inheritance

Python allows types to subtype other types using single or multiple
inheritance, and forces all types to inherit from the fundamental object
type if no other base types are speci�ed. This means that all types can
be represented in a hierarchy rooted at the object type. Since multiple
inheritance is allowed, this hierarchy will take the form of a directed acyclic
graph.2An example type hierarchy showing some of the standard built-in
types as well as a few �ctitious types is depicted in �gure 2.5. In the �gure,
the document type uses multiple inheritance to subtype both the searchable
type and the built-in string type.

2In single inheritance languages, type hierarchies are always trees.
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Figure 2.5: A sample type hierarchy.

Figure 2.6: Inheritance graph for the document type.
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typedef struct {
PyIntObject base ;
char a;
�oat b;

} SubTypeOfIntObject ;

Figure 2.7: Object structure of a type subtyping the built-in list type.

class name(bases):
body

Figure 2.8: Syntax of the class statement.

An edge in the type hierarchy graph represents inheritance, where the edge
leads from the base type to the subtype. Conversely, an inheritance graph
for a type may be produced by recursively drawing edges from a type to its
base types. Figure 2.6 shows the inheritance graph as it would appear for
the document type.
Type objects keep track of their relationship to other types using two data
structures. Firstly, each type keeps a simple list of its base types, accessible
from Python code through the special __bases__ attribute. Secondly, each
type maintains a list of its immediate subtypes, which can be retrieved by
calling the special __subclasses__ method.
In general, the concept of inheritance means that the methods and �elds
of the base types apply to its subtypes, too, unless explicitly overridden by
the subtype. In a statically typed language, the compiler will resolve all
method calls and �eld references by examining the type and then its base
types in some prede�ned order until the method or �eld in question is found.
This is how inheritance is implemented. Python, being a dynamically typed
language, essentially does the same, except at run-time. The implementation
of inheritance in Python is described in more detail in Section 2.5.5.

2.4.2 Built-in vs. user-de�ned types

As mentioned in Section 2.2, Python modules may be implemented in C or
Python. Likewise, Python types may be created using C or Python code.
In the same way that modules implemented in C are sometimes referred to
as built-in modules, types implemented in C are called built-in types . Most
of the types provided by the standard distribution, such as int or dict,
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are built-in types. They are created by statically allocating a type object
in a built-in module, and binding it to the module's namespace (giving it
a name) in the module's initialization function. The methods of the type
are implemented as C functions, and pointed to by the type object's method
slots.
Built-in types typically store data required for their implementation in the
object structure, which is de�ned similarly to those in Figure 2.3 and 2.4. If
the type has a built-in base type, the subtype's object structure must extend
that of its base type, enabling the subtype to rely on the implementation
provided by the base type. Figure 2.7 shows an example of this technique,
where a subtype of the built-in int type extends its object structure with two
more �elds. The data structures associated with the subtype are appended
to the existing object structure de�ned by the base type. One way of looking
at the PyObject data structure is as the object structure of the fundamental
object type. All object structures consequently extend this structure, since
all types are subtypes of the object type.
Since subtypes of built-in types must have an object structure that extends
the base type's object structure, a type inheriting from multiple built-in types
is faced with a con�ict. It cannot extend more than one object structure at
a time, which means that it is unable to rely on the implementation of
more than one built-in base type. As a consequence, a general restriction on
Python types is that they cannot have more than one built-in base type.
Naturally, new types may also be created by Python code, in which case
the class statement is used. Types created in this way are called user-
de�ned types . The syntax of the class statement is shown in �gure 2.8.
In the �gure, name is the name of the new type, and bases is a comma-
separated list of bases. body is a block of statements that form the body
of the class statement. In practice, the body often consists of a series of
function de�nitions (or def statements ), which de�ne the methods of the
new type.
Informally, the e�ect of the class statement is to create a new type of
the speci�ed name, which inherits from the given base types, and has the
methods de�ned in the body. A new type object is created and bound to
the speci�ed name in the current namespace. Section 2.4.4 goes into more
detail about the semantics of a class statement.
Note that there are no fundamental di�erences between built-in and user-
de�ned types, except for the way they are created, and the fact that types
may only have one built-in base type.
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# Execute the statements in the body and store
# the results in a dictionary d
d = {}
exec body in d
del d['__builtins__' ]

# Create the new type by calling the meta-type
name = type('name', bases, d)

Figure 2.9: Creating a new type by calling the meta-type.

2.4.3 Meta-types

Since the type object is itself a regular object, it also has a type of its own.
The type of a type is generally referred to as a meta-type. In the same way
that types de�ne the behavior of objects, meta-types de�ne the behavior of
types. Of course, meta-types have types, too, so the terminology goes on
to include the terms meta-meta-type and so forth. However, those terms
are rarely needed, since the chain of type pointers normally terminates fairly
soon in a type that is its own type. Indeed, this is exactly the case for
Python's most common meta-type, type.3As explained in the next section,
meta-types play a central role in the creation of types.

2.4.4 The Don Beaudry hook

Section 2.4.2 describes the class statement, and how it is used to create
new types. However, that is a simpli�ed explanation, which assumes that
the meta-type in use is type. In fact, the class statement may be used to
create any kind of object, depending on which meta-type is speci�ed. The
key mechanism that allows this �exibility is called the Don Beadry hook ,
after its inventor, and is a simple, yet elegant rule. Just like new objects are
created by calling their type, new types are created by calling their meta-
type. So the e�ect of a class statement is actually a call to a meta-type,
and the return value from this call is bound to the name speci�ed in the
statement. The parameters passed to the meta-type are:

• The name speci�ed in the class statement, as a string.
• A tuple containing the bases.

3Readers may �nd it confusing that the name of a meta-type is type. If so, consider that
the type of integers is named int and the type of lists is named list. Correspondingly,
it makes sense for the type of types to be named type.
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• A dictionary, which is the namespace that results from executing the
statements in the body of the class statement. In practice, this will
often be a dictionary containing the methods of the new type.

Figure 2.9 shows a code snippet that essentially does the same as a class
statement, except that it calls the meta-type manually. The results of that
code and a regular class statement (using the type meta-type) are identical.
In order to create other kinds of objects than types using the class statement,
a di�erent meta-type must be speci�ed. This can be done by assigning a value
to the special __metaclass__ attribute somewhere in the class body, or by
inheriting the meta-type from the base(s). When executing a class statement,
the Python runtime will examine the bases listed, and use their special
__class__ attributes to determine the meta-type to use. As described in
Section 2.4.5, the default meta-type used when no bases are speci�ed is in
fact not type. This is for backwards compatibility reasons, and will change
in future versions of Python. For the moment, however, the most common
technique for creating types is to inherit from the built-in object type, or
from another built-in type whose meta-type is type. This is actually required
to make sure that the class statement does produce a new type.
It is possible (and quite easy) to de�ne custom meta-types, and this actually
has many applications, since meta-types are a very powerful mechanism.
For instance, a custom meta-type can add logging calls to all methods of
the types it creates, or even (ab)use the class statement to create something
entirely di�erent from a type.

2.4.5 Classes

Python was not originally designed as an object-oriented language, and types
initially lacked the ability to inherit from other types. The concept of
subtyping[6] was actually added quite recently, even though the language
has supported object-orientation for some time. This is because Python's
�rst approach to supporting object-orientation was adding a new kind of
objects called classes , without changing the fundamentals of how types
worked. Classes and types thus became separate entities that were in
no way interchangeable. This has later been recognized as a bad design
choice, since it introduced an arti�cial distinction between types and classes
known as the class/type dichotomy . In the most recent versions of Python,
great changes have been made to the type system, essentially rendering
classes obsolete. The process of revising the type system while maintaining
backwards compatibility for classes is often referred to as the type/class
uni�cation [5].



CHAPTER 2. PYTHON INTERNALS 14

>>> class A: pass
. . .
>>> class B: pass
. . .
>>> class C(object): pass ## C is a type, not a class
. . .
>>> a = A(); b = B(); c = C()
>>> a. class , b. class , c. class
(<class main .A>, <class main .B>, <type '__main__.C'>)
>>> type(a), type(b), type(c) 10
(<type 'instance'>, <type 'instance'>, <type '__main__.C'>)

Figure 2.10: An interpreter session illustrating the di�erence between types
and classes.

When the class statement was introduced in Python, its e�ect was to create
a new object of type ClassType , also known as a class. (Hence the name
and syntax of the statement). The Don Beadry hook described in Section
2.4.4 was implemented later, and classes are now created by specifying
ClassType as the meta-type to use. For backwards compatibility, ClassType
is the default meta-type used when no bases are speci�ed in the class
statement. In addition, if all the bases are classes, the class statement will
use the ClassType meta-type, thus creating a class. Like types, classes
(or ClassType objects) have a special __bases__ attribute that refers to
its base classes. To support �instantiation�, classes are callable, and return
a new InstanceType object when called. InstanceType objects are also
referred to as class instances, and have a special __class__ attribute that
refers to the class that created them. However, all InstanceType objects
are in fact instances of the same type (namely InstanceType ), so there is
no correspondence between the class and type of an object. Figure 2.10
shows an interpreter session that illustrates this point. Inheritance for class
instances is implemented by the InstanceType type, which overrides the
attribute lookup methods to traverse the inheritance graph of the object's
class. This is similar to the way inheritance is implemented for types, as
described in Section 2.5.5.
The type/class uni�cation has entailed quite major changes to the Python
runtime, but the changes are nevertheless very transparent to the user. This
has unfortunately contributed to a general confusion about the terms types
and classes. Many programmers seem to insist on calling their user-de�ned
types classes, since they are created using a class statement. To distinguish
these types from actual classes, terms such as classic classes and old-style
classes are used to describe ClassType objects. This thesis attempts to avoid
such confusion by consistently reserving the term class for actual ClassType
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objects, and referring to types by their proper name, even though they may
be created using class statements.
Since classes remain part of the Python language purely for backwards-
compatibility, and there is no need to use them in new programs, support
for sharing of class instances was not a high priority in the design of POSH.
POSH generally restricts the kind of objects that can be shared in that
their type cannot override the special attribute lookup methods. This
restriction also precludes sharing of class instances, since the InstanceType
type overrides attribute lookup in order to implement inheritance.

2.5 Attributes

Python objects may have associated values called attributes , which are
accessed using the dot operator , expressed with the period sign. To access
an attribute named �a� of an object o, the syntax is simply o.a. As with
any other operator in Python, the e�ect of the dot operator is determined
at run-time. Hence, attribute lookup is performed at run-time, and not at
compile-time, which would be the case for a statically typed language.

2.5.1 Object dictionaries

Objects may provide storage for their attributes by maintaining a regular
dictionary that maps the attribute names to their values. This is done by
reserving space for a pointer to the dictionary in the object's data structure.
A special �eld in the type object, named tp_dictoffset , speci�es the
o�set in bytes of the dictionary pointer, relative to the start of the object's
structure. If tp_dictoffset is 0, objects of that type have no dictionaries.
Object dictionaries can generally be accessed from Python code via the
special __dict__ attribute. For certain kinds of objects (notably types),
the __dict__ is read-only, while other types permit direct modi�cation
of the contents of the dictionary. In any case, directly modifying an
object's dictionary is seldom an appropriate way of accessing its attributes.
In addition, objects without dictionaries may still support attributes, as
explained in the following sections.
User-de�ned types automatically reserve storage for a dictionary in their
objects, unless explicit steps are taken to avoid this. (Speci�cally, this
is avoided by assigning an empty list to the special __slots__ attribute
someherere in the body of the class statement.)
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2.5.2 Attribute lookup methods

The e�ect of reading and writing the attributes of an object may be
customized by a type by de�ning certain special methods. A brief description
of their semantics is given here.

__getattribute__ is invoked whenever an attribute is read, and accepts
the name of the attribute as an argument. It should simply return the
value of the attribute. Implementing this method can be cumbersome,
since great care must be taken not to accidentally access an attribute
of the object, as that will cause in�nite recursion.

__getattr__ is a less intrusive way of overriding attribute access, which
works as a fall-back for the default __getattribute__ method imple-
mented by the object type. Whenever the normal lookup algorithm
fails, this method is invoked with the name of the attribute, and should
return its value. This can be used, for instance, to implement default
attribute values.

__setattr__ de�nes the e�ect of attribute assignment, and is invoked with
the name and value of the attribute whenever an attribute is assigned
a value.

__delattr__ de�nes the e�ect of deleting attributes (using a del statement
such as del o.a), and accepts the name of the attribute being deleted.

2.5.3 Attribute descriptors

Attribute descriptors allows for considerable �exibility in customizing at-
tributes, without rede�ning the default attribute lookup methods.
Section 2.5.2 describes the attribute lookup methods that a type can de�ne
to customize the attributes of its instances. However, the default attribute
lookup methods inherited from the object type also allow for considerable
�exibility, through the concept of attribute descriptors , or descriptors for
short. A descriptor is an object that controls the access to an individual
attribute. It resides in the dictionary of a type object, indexed by the name of
the attribute it controls. The descriptor must implement the special __get__
and __set__ methods, and optionally the __delete__ method.4
When the default __getattribute__ method looks for an attribute of an
object, it �rst checks the dictionary of the object's type, looking for a

4Do not confuse the __delete__ and __del__ methods; the latter is the destructor
that's invoked when the object is deleted.
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descriptor that is indexed by the attribute name. If no such descriptor is
found, the attribute value is sought in the object's dictionary. If a descriptor
is found, its __get__ method is invoked, and the return value is used as
the value of the attribute. The speci�c parameters passed to __get__ are
the object on which the attribute lookup is made, as well as the object's
type. Note that the attribute may lack both a descriptor and an entry in
the object's dictionary. This means that the attribute doesn't exist, and will
result in an AttributeError exception being raised, which is indeed a very
common run-time error.
Similarly, the default __setattr__ method looks for a descriptor in the
dictionary of the object's type, and invokes its __set__ method, which
de�nes the e�ect of the attribute assignment. The parameters passed to
__set__ are the object to which the attribute assignment is made, and the
new value of the attribute. If no descriptor is found, the value is assigned
directly to the object's dictionary.
The default __delattr__ method invokes the __delete__ method of the
descriptor, which de�nes the e�ect of deleting an attribute. If no descriptor
is found, the value is deleted from the object's dictionary.
The implications of attribute descriptors are that types can customize the
implementation of their attributes to a great degree, without altering the
default attribute lookup methods. This can be done simply by placing
customized descriptors in their dictionaries. The default behavior for
attributes that are not controlled by descriptors, is to store the attribute
values in the object's dictionary. Descriptors may also use the object's
dictionary for storing values, but may make all kinds of adaptations to
the values that are read and written. For example, a custom descriptor
can enforce speci�c access semantics, such as read-only or write-once, or
apply constraints with regard to the possible values of an attribute. Many
of the special attributes referred to throughout this thesis, such as the
__class__ and __bases__ attributes of types, described in Section 2.4.1,
are implemented by means of special descriptors.

2.5.4 Wrapper descriptors

As described in Section 2.4, type objects contain method slots that de�ne
the e�ect of various generic operations when applied to the type's instances.
Built-in types implement these methods by pointing the method slots
at appropriate C functions. However, user-de�ned types implemented in
Python may also de�ne most of these methods, by de�ning methods that
have certain special names. For instance, a built-in type can implement a
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string conversion method by pointing the tp_str �eld of the type object to
an appropriate C function. A user-de�ned type can achieve the same e�ect
by de�ning a method with the special __str__ name. These two ways of
implementing the method are equivalent, and mutually exclusive. Regardless
of how the method is implemented, there are always two equivalent ways to
invoke it.

• Low-level C code can invoke the method by calling the C function
pointed to by the method slot.
• High-level Python code can invoke the method just like any other
method, knowing its special name.

For instance, calling the __str__ method of an object is always equivalent
to low-level C code calling the function pointed to by tp_str. Python
uses a special kind of attribute descriptors , described in Section 2.5.3, to
allow Python code to call a type method implemented in C. The descriptors
in question are so-called wrapper descriptors , whose purpose is to wrap a
low-level C function, making it callable from Python. When a type object
is initialized, a wrapper descriptor is added to its dictionary, indexed by
the appropriate attribute name, for each of its non-zero method slots. The
__get__ method of wrapper descriptors return callable objects that invoke
the low-level C function when called.
Wrapper descriptors ensure that all the methods de�ned by the method slots
of a built-in type, remain callable from Python code as well. However, the
inverse problem still exists, when low-level C code wants to invoke a special
method de�ned by a user-de�ned type implemented in Python. In this case,
the actual implementation of the method is found in a Python function,
not in a low-level C function. This is solved by assigning special-purpose
dispatcher functions to the method slots for which Python implementations
are available. A dispatcher function has the correct signature for its method
slot, and invokes the Python implementation using the generic Python/C
API. By keeping the wrapper descriptors and method slots consistent with
each other, as described in Section 2.5.5, Python ensures that the two ways
of invoking a type method, outlined above, remain equivalent.

2.5.5 Attribute lookup on types

The type meta-type overrides the attribute lookup methods described in
Section 2.5.2, customizing the attribute lookup algorithm used for types.
This is required to implement inheritance, as outlined in Section 2.4.1.
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>>> class Descriptor(object):
. . . def get (self, *args):
. . . print args
. . .
>>> class T(object):
. . . attr = Descriptor()
. . .
>>> T.attr
(None, <type '__main__.T'>)
>>> T().attr 10
(< main .T object>, <type '__main__.T'>)

Figure 2.11: Interpreter session illustrating the nature of descriptors.

Section 2.4.1 explains how Python supports multiple inheritance, which
means that a type may subtype multiple base types. The actual mechanism
that implements inheritance are the special attribute lookup rules for type
objects. Every type has an inheritance graph similar to the one in �gure 2.6.
In a statically typed language, the compiler traverses the inheritance graph of
a type to resolve attribute accesses such as method calls or �eld references.
Python essentially does the same, except that attributes are resolved at
run-time. The type meta-type implements a specialized attribute lookup
algorithm for type objects, by overriding the special __getattribute__
method described in Section 2.5.2. The algorithm traverses the type's
inheritance graph, examining each type in turn. When a type is encountered
that has a value for the given attribute, the search terminates. The order
in which the inheritance graph is traversed is called the method resolution
order5, and is calculated when the type object is created. It is stored as a
list of types in the special __mro__ attribute of the type.
The algorithm used for calculating the MRO is the C3 algorithm described
in [1], and is quite complicated, since it tries to generate an optimal order
for potentially complex inheritance graphs. The important point, however,
is that a subtype always precedes its base types in the MRO, which means
that its attribute values override those of the base types.
Aside from the fact that an attribute lookup on a type will traverse
the type's inheritance graph attempting to �nd a value for the attribute,
there are di�erences in how types make use of the descriptors found in
their dictionaries. The default lookup algorithm described in Section 2.5.3
examines the dictionary of the object's type. Similarly, an attribute lookup

5Since the order is used for resolution of attributes in general, rather than methods in
particular, a more accurate term would be the attribute resolution order .
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on a type object will examine the dictionary of the meta-type, looking for a
descriptor. However, in the event that no descriptor for the attribute is found
in the meta-type, type objects do not unconditionally return the value found
in their dictionary. If the value found in the type's dictionary is a descriptor,
the value of the attribute is determined by calling the descriptor's __get__
method. Consequently, the __get__ method of a descriptor gets called in
response to attribute lookups on both the type itself and its instances. The
two cases are distinguished by the parameters passed to the descriptor.

• As described in Section 2.5.3, when an attribute lookup is made on
the type's instance, the parameters to the __get__ method are the
instance in question, as well as the type.
• When an attribute lookup is made on the type itself, the �rst parameter
to the __get__ method is None, and the second is the type. In other
words, the instance in question is None in this case.

Figure 2.11 shows an example interpreter session that might help clarify the
semantics of descriptors. The session de�nes a trivial descriptor type, whose
__get__ method simply prints its arguments to the console. The de�nition
of the T type assigns a descriptor object to an attribute, which amounts to
placing the descriptor in its dictionary. The output shows the parameters
passed to __get__ as a result of an attribute lookup on the type, and its
instance, respectively.
The ability to distinguish between attribute lookups on a type and its
instances, using the same descriptor, is crucial to the implementation of
methods. When the methods of a type are de�ned in the body of a class
statement, they are initially regular function objects. However, the type
meta-type wraps them in special method descriptors that implement the
semantics of bound and unbound methods . A regular method call on an
object actually consist of two separate operations. Firstly, the name of the
method is looked up as an attribute of the object. Secondly, the resulting
attribute value is called. Method descriptors implement such method calls
by returning a bound method from the attribute lookup. This means that the
method is bound to an object, and calling it will implicitly pass that object
as the �rst parameter to the method, by convention named self. Unbound
methods, on the other hand, are not associated with a particular object, and
require the self parameter to be speci�ed explicitly when called. Unbound
method calls are commonly used to invoke a base type's implementation of
a method.
Python also uses descriptors to implement so-called static methods . The
__get__ method of these descriptors always ignore their �rst parameter, i.e.



CHAPTER 2. PYTHON INTERNALS 21

the instance to which the attribute lookup applies. No self parameter is
passed, regardless of whether the method was invoked on an instance or on
the type itself. The e�ect is that static methods never apply to a speci�c
instance, but rather to the type as a whole, similarly to how static methods
behave in languages like C++ and Java.
Although the most drastic changes made to the attribute lookup rules for
types are in the context of reading types, some subtle changes have been
made to the semantics of attribute assignment, too. This involves the
wrapper descriptors and dispatcher functions described in Section 2.5.4. If
a function is assigned to one of the special attributes that correspond to
a method slot in the type object, an appropriate dispatcher function is
automatically installed in the relevant method slot. This allows Python
code to assign the special methods of a type dynamically, while the
implementations become available to low-level C code as well. This does
not really change the semantics of attribute assignment to types, it is more
of an implementation detail to maintain the consistency between the wrapper
descriptors and the dispatcher functions.

2.6 Garbage collection

This section provides a brief description of how Python approaches the
problem of garbage collection[4, 2].

2.6.1 Python reference counting

Starting out as a high-level scripting language, the design of Python
included garbage collection as a fundamental premise from the very start.
The garbage collection algorithm chosen was reference counting , for its
simplicity and painless portability. As described in Section 2.3.1, python
maintains a reference count for each object, accessible as the ob_refcnt
�eld of the PyObject structure. This reference count is updated using
the Py_INCREF and Py_DECREF macros, which increment and decrement the
count, respectively. Whenever a new reference to an object is introduced,
the reference count is incremented, and when a reference is deleted or
assigned a new value, the reference count of the object it referred to is
decremented. When the reference count reaches 0, the object is deleted. The
scheme allows for a simple implementation, although it does put a load on
programmers of built-in modules, who must diligently apply the Py_INCREF
and Py_DECREF macros at the correct places. If the reference count of an
object is decremented by mistake, the end result will eventually be a core
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dump, since the object will be deallocated prematurely. However, a spurious
Py_INCREF will only lead to memory leaks, which can be harder to detect. As
such, correctly updating the reference counts is de�nitely the most di�cult
part of programming built-in modules.

2.6.2 Cyclic garbage collection

Although Python code can usually safely rely on garbage collection to dispose
of their objects, barring programming errors in built-in modules, reference
counting has an inherent disadvantage concerning cyclic references. This
occurs when an object directly or indirectly contains a reference to itself, for
instance when the �rst item of a list is the list itself. Even though such a
cycle of objects may be unreachable from any other objects, they will never
be deallocated, since all of them have nonzero reference counts. Python
recently introduced the concept of cyclic garbage collection , which attempts
to detect such cycles and deallocate them, if possible. If the objects involved
in a cycle have custom destructors (__del__ methods, in other words), there
is no well-de�ned order in which to destruct them. Such a cycle is considered
a programming error, and a warning will be issued if it is detected.



Chapter 3

Design and implementation

3.1 Architecture

This section gives a high-level introduction to the design and implementation
of POSH, and de�nes much of the terminology that is used throughout this
chapter.
The objective of POSH is to allow regular Python objects to reside in
shared memory, where they can be made accessible to multiple processes.
Objects allocated in shared memory are referred to as shared objects . For
convenience, the types of shared objects are referred to as shared types , but
this does not imply that the type objects are allocated in shared memory.
Section 3.5.1 explains why type objects cannot reside in shared memory.
However, since type objects are essentially read-only data structures, they
can easily be made accessible to all processes by creating them prior to any
fork calls. Section 3.5.1 discusses the implications of using the fork system
call for process creation.
The process of creating a shared object that is a copy of a given non-shared
object, is called sharing the object. Objects that are eligible for sharing are
called shareable objects , and their types are referred to as shareable types .
POSH maintains a mapping that speci�es which shareable types correspond
to which shared types. This is the type map , described in Section 3.3.1.
When an object is shared, its type (which is a shareable type) is mapped to
the corresponding shared type, and an instance of the shared type is created,
which copies its initial value from the object being shared.
The basic strategy for implementing a shared type is to subtype its equivalent
shareable type, overriding its allocation methods. This allows the shared

23
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typedef struct {
SharedRegionHandle my handle;

struct { /* . . . */ } proctable;
struct { /* . . . */ } regtable;
struct { /* . . . */ } sleeptable;

} Globals;

Figure 3.1: Structure of the globally shared data.

type to inherit the existing implementation details of the shareable type,
while overriding the crucial aspect of object allocation. The exceptions
to this rule are the shared container types, which are reimplemented from
scratch by POSH, using the concept of memory handles for storing references
to other shared objects.
POSH wraps all shared objects in special proxy objects , that shield the shared
objects from direct access.

3.2 Shared memory management

A basic service required by POSH is the ability to create shared memory
regions and attach them to the process' address space. Shared memory is
used by POSH to maintain global data structures accessible to all processes.
Furthermore, �ne-grained management of shared memory is required to
manage the relatively small memory chunks needed for shared objects' main
and auxilliary data structures. This section describes how POSH manages
shared memory.

3.2.1 Globally shared data

POSH uses shared memory to implement global control and globally shared
data.
Global control is a requirement in POSH. For example, garbage collection of
shared objects, as described in section 3.7, requires the cooperation and co-
ordination of all processes to determine when an object should be reclaimed.
To implement global control, some form of inter-process communication is
required. The IPC mechanism used by POSH for this purpose is shared
memory. The data structures needed for the communication are allocated
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in a shared memory region. These data structures are referred to as globally
shared data , since they are accessible to all processes.
There is a single shared memory region that contains all the globally shared
data. This memory region is created and attached at module initialization
time, when the module is �rst imported. The interface described in Section
3.2.2 is used for this purpose. The attached region is accessed through a
pointer named globals. Since all processes using POSH are descendants
of the process that �rst imported the module, the shared memory region is
attached at the same address in all processes, and the globals pointer is valid
for all processes. The structure of the globally shared data to which globals
points is shown in Figure 3.1. The my_handle member is a handle for the
shared memory region in which the globally shared data is allocated. The
handle is needed to remove the region as part of the cleanup performed by the
last process to exit, as described in Section 3.10.3. A high-level description
of the remaining members is given here � the details are provided in the
relevant sections.

proctable This is the process table , which is used to assign each process
a numeric ID in the range 0�MAX_PROCESSES . This makes it easy to
implement a set of process IDs as a bitmap, as described in Section
3.10.1.

regtable This is the region table , which assigns a numeric ID in the range
0�MAX_REGIONS to each shared memory region. The region table is
used for global cleanup purposes and by the implementation of memory
handles described in section 3.5.1.

sleeptable This is the sleep table , which contains one semaphore per
process. It is used by the implementation of shared locks described
in section 3.9, to allow processes to sleep while waiting for an event.

When shared memory is used for IPC, it must be complemented with a
synchronization mechanism. The primitives used for synchronizing the inter-
process communication in POSH are shared locks , which are described in
section 3.9.

3.2.2 Management of shared memory regions

POSH de�nes a low-level and a higher-level interface for management of
shared memory regions, which is intended to improve the portability of the
code.
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typedef /*. . .Platform-speci�c. . .*/ SharedRegionHandle;

SharedRegionHandle SharedRegion New(size t* size);
void SharedRegion Destroy(SharedRegionHandle h);
void* SharedRegion Attach(SharedRegionHandle h);
int SharedRegion Detach(void* addr);

Figure 3.2: Low-level interface for management of shared memory regions.

typedef struct {
struct {

Lock lock;
int count;
int freepos;
SharedRegionHandle regh [MAX REGIONS];
size t regsize[MAX REGIONS];

} regtable;

/* Other members are omitted. . . */ 10
} Globals;

Figure 3.3: De�nition of the region table.

Operating systems implement support for shared memory in several di�erent
ways. Consequently, their interfaces for management of shared memory
regions vary, which is clearly a portability issue for applications using
shared memory. As a general strategy, POSH attempts to con�ne the
portions of the code that are non-portable to speci�c modules with well-
de�ned interfaces, which makes it feasible to completely replace a module's
underlying implementation, as long as the same interface is supported.
One of the interfaces de�ned by POSH is used for the low-level management
of shared memory regions, shown in �gure 3.2. As a part of the interface, the
SharedRegionHandle typedef is de�ned, which is used to uniquely identify a
shared memory region. A description of the functions in the interface follows.

_SharedRegion_New creates a new shared memory region. The size
parameter to the _SharedRegion_New function is an in/out parameter.
On entry, it is the requested size of the new memory region in bytes �
on return, it is the actual size of the new region, which may be larger
than requested. This will commonly be the case if a size is requested
that is not a multiple of the operating system's page size, since
operating systems generally implement shared memory by modifying
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SharedMemHandle SharedRegion New(size t *size);
void SharedRegion Destroy(SharedMemHandle h);

Figure 3.4: Higher-level interface for management of shared memory regions.

virtual memory mappings, in which the granularity is restricted to
a page. The function returns a handle that uniquely identi�es the
shared memory region. On failure, the function returns the special
SharedRegionHandle_NULL value, which can be rede�ned as a part of
the interface.

_SharedRegion_Destroy accepts a handle for a shared memory region and
destroys it, releasing the operating system resources it consumes.

_SharedRegion_Attach accepts a handle for a shared memory region, and
attaches the region to the process' address space, returning the address
at which it is attached. Note that the same shared memory region may
be attached at di�erent virtual addresses in di�erent processes. This
has some major implications on how to store recursive data structures
in shared memory, as described in Section 3.5.1. On failure, this
function returns NULL.

_SharedRegion_Detach detaches a shared memory region from the address
space of the process, undoing the virtual memory mappings established
by _SharedRegion_Attach . A shared memory region that has been
attached must be detached before it is destroyed. This function returns
0 on success, and −1 on failure, in keeping with the general convention
in Python.

The current implementation of this interface relies on the System V interface,
which o�ers the abstraction of shared memory regions that persist across
process lifetimes. Consequently, they need to be explicitly destroyed. Other
(future) implementations may not have this requirement, in which case
they could simply implement _SharedRegion_Destroy as a null operation,
doing nothing. Similarly, some implementations might be able to implement
_SharedRegion_Detach as a null operation, since explicitly detaching the
regions might not be necessary.
As brie�y described in Section 3.2.1, a part of the globally shared data is
the region table , whose de�nition is shown in Figure 3.3. The region table
maintains information about all shared memory regions in existence, with the
exception of the region holding the globally shared data itself. A description
of the region table's �elds follows.



CHAPTER 3. DESIGN AND IMPLEMENTATION 28

lock is a shared lock , as described in Section 3.9.3, which is used to
synchronize access to the region table.

count is the number of shared memory regions registered in the table.
freepos is a search �nger used to speed up searches for free entries in the

regh and regsize arrays. It holds an index thought to be free, but
makes no strong guarantees. Consequently, accessing this �eld alone
can be done without synchronization.

regh is an array that contains the handles of all existing shared memory
regions. The special SharedRegionHandle_NULL value is used to
indicate free entries.

regsize is an array parallel to regh, holding the size of each shared memory
region.

Whenever a shared memory region is created, its handle and size should
be assigned at a free index in the regh and regsize arrays. Conversely,
the corresponding entries should be freed when a shared memory region is
destroyed. The purpose of maintaining this global state is two-fold:

• Firstly, it enables the last terminating process to remove shared
memory regions that haven't been explicitly removed. This form of
cleanup is important, since the current implementation relies on the
System V interface[3], which allows shared memory regions to persist
across process lifespans. Thus, some cleanup strategy is required to
avoid left-behind memory regions that persist only to waste system
resources.
• Secondly, the region table maps the handles for shared memory regions
to the set of integers in the range 0�MAX_REGIONS . This facilitates the
implementation of constant-time mapping from memory handles to
pointers, as desribed in section 3.5.1.

Since the region table must be updated whenever a shared memory region
is created or destroyed, there is a higher-level interface that manages
these tasks, shown in Figure 3.4. SharedRegion_New creates a new
shared memory region using _SharedRegion_New , and �nds a free index
for it in the region table. It returns a memory handle , described in
Section 3.5.1, for the region's starting address. The size parameter is
an in/out parameter, with the same behaviour as in _SharedRegion_New .
SharedRegion_Destroy frees the region's entries in the region table, and
destroys it using _SharedRegion_Destroy .
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h.alloc(size) −> address, size
h.realloc(address, size) −> address, size
h.free(address) −> None

Figure 3.5: Interface supported by a heap object h.

PyObject* Address FromVoidPtr(void* ptr);
void* Address AsVoidPtr(PyObject* obj);

Figure 3.6: Interface for creating and accessing Address objects.

The higher-level interface is implemented entirely using the lower-level inter-
face (pre�xed by underscores), so only the latter needs to be reimplemented
in order to use a di�erent underlying implementation of shared memory.

3.2.3 Fine-grained shared memory management

POSH implements �ne-grained management of shared memory by delegating
the task to special heap objects that support a well-de�ned interface.
Section 3.2.2 describes the interface POSH provides for creating relatively
large regions of shared memory. However, placing objects in shared memory
requires more �ne-grained memory management. POSH delegates the task
of �ne-grained management of shared memory to special heap objects that
are associated with shared types. Consequently, the low-level C code
implemented by the heap objects can be easily extended by Python code
through subtyping or delegation. This is a great advantage when higher-
level facilities such as logging are to be added to the memory management.
Figure 3.5 shows the interface that heap objects are required to implement.
A brief description of the methods follows.

alloc accepts a size argument, which speci�es the number of bytes to
allocate on the heap. The method returns two values (as a tuple);
the address of the allocated chunk of memory, and the actual size of
the chunk, which may be larger than requested. Errors are indicated
by raising exceptions.

realloc accepts the address of an existing memory chunk, and reallocates
the chunk to make room for the requested number of bytes. The
(possibly) new address of the chunk is returned, along with its actual
size. Exceptions are raised in case of errors.
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void* SharedAlloc(PyObject* self, size t* size);
void* SharedRealloc(PyObject* self, void* ptr, size t* size);
void SharedFree(PyObject* self, void* ptr);

Figure 3.7: Low-level interface used by shared objects to allocate memory
from their type's data heap.

free accepts the address of an existing memory chunk, and releases it to
the heap's pool of memory. It returns None on success, and raises an
exception on failure.

The size arguments and return values are passed as integer objects, and
the addresses are passed as objects of type Address. The Address type
is is a simple built-in type provided by POSH, that essentially wraps a C
variable of type void*. POSH also de�nes an interface for easy manipulation
of Address objects, listed in Figure 3.6.
Each shared type has two special attributes that refer to heap objects.

__instanceheap__ refers to the instance heap of the type, on which the
instances of the shared type are allocated. Speci�cally, the heap
contains the object data structures described in Section 2.3. Being
shared objects, their data structures also include the SharedObject
header described in Section 3.4.1.

__dataheap__ refers to the data heap of the type, which is used for the
auxiliary data structures of the type's instances, such as the vectors
maintained by the shared lists and tuples described in Section 3.5.2.

In order to use a heap object for memory allocation, low-level C code
needs to create the int and/or Address objects needed as parameters, call
the appropriate method using one of the generic functions de�ned by the
Python/C API, and unwrap the return values to store them in regular C
variables. This is essentially an application of the general technique of data
marshalling , and does incur a small performance penalty compared to a pure
low-level C interface. However, at the time the design choice was made, the
advantages gained in extensibility were considered to outweigh the drawback
of a small performance penalty.
As a concrete example that might serve to justify the design choice, the
verbose mode of POSH wraps all heap objects in special VerboseHeap
objects. These verbose heaps implement the heap interface by delegating



CHAPTER 3. DESIGN AND IMPLEMENTATION 31

typedef struct
{
SharedMemHandle head[NOF ALLOC SIZES];
Lock lock[NOF ALLOC SIZES];

} root t;

typedef struct
{
PyObject HEAD
root t *root; 10

} SharedHeapObject ;

Figure 3.8: De�nition of the object structure for SharedHeap objects, and
the root data structure.

all calls to the wrapped heap object, while printing verbose debugging
information to the console. VerboseHeap is a user-de�ned type implemented
entirely in Python, that provides very valuable debugging information,
without touching the low-level C code that implements the actual heap
object. As a consequence, the development time needed to implement the
feature was vastly shortened, and no recompilation of the C code is required
to activate or deactive the verbose mode. An example of the output produced
by the verbose heaps can be seen in Figure 3.31.
For convenience, POSH de�nes a low-level C interface, shown in Figure
3.7, which is designed for shared types implemented in C. The interface
allows a shared object to allocate memory from the data heap of its type,
without dealing with the data marshaling described above. It resembles
the well-known memory management interface provided by the standard C
library (malloc, realloc and free), but makes some adaptations. Firstly,
each function accepts a self parameter, which is the object requesting the
allocation. The heap object used for the allocation is found by looking up
the __dataheap__ attribute of self's type. Secondly, size is an in/out
parameter, which contains the actual size of the allocated chunk when the
function returns. Since the actual size of the chunk may be larger than
requested, making this information available to the caller may allow it to
optimize memory utilization. For instance, shared lists and dictionaries,
described in Section 3.5, make use of this information when resizing their
auxiliary data structures.
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typedef unsigned int word t;

typedef struct
{
SharedMemHandle next ;
Lock lock;
word t nof units;
word t nof free units;
word t unit size;
word t unit mask; 10
word t head;
unsigned char data[1];

} page t;

Figure 3.9: De�nition of the page data structure used by SharedHeap objects.

3.2.4 The SharedHeap type

POSH provides a built-in type that implements the heap interface described
in Section 3.2.3 in a relatively straightforward way.
As described in Section 3.2.3, �ne-grained implementation of shared memory
is delegated to special heap objects. POSH implements a built-in type named
SharedHeap that supports the required interface. It is intended as a minimal
implementation, designed to be simple, yet reasonably e�cient. As explained
in Section 3.2.3, the heap objets used for shared memory allocation are
determined by special attributes of the shared types. Thus, modifying POSH
to use an alternate implementation of shared heaps is extremely easy, and
doesn't even require a recompilation of the C code.
The SharedHeap type uses a simple algorithm with �xed-size allocation units
that increase exponentially in size. For each unit size, a linked list of pages
is maintained. Each page is a shared memory region that holds a linked list
of allocation units of a given size. New pages are created and linked into
their respective lists as needed.
As shown in Figure 3.8, the object structure of SharedHeap objects only
contains a single pointer (in addition to the mandatory �elds de�ned by
PyObject). The pointer points to a root data structure , de�ned by the
C structure root_t, which is allocated in a shared memory region. The
root data structure contains the actual implementation of the heap. This
technique in e�ect makes the SharedHeap object shared, since a fork will only
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copy the object, which simply contains a memory handle, and not the actual
implementation, which is located in shared memory. The SharedHeap type
could have been implemented by starting out with a NonSharedHeap and
using the regular object sharing mechanism to allow sharing. However, this
would require it to implement copy semantics, as described in Section 3.3.2,
introducing unnecessary complications, since only shared instances would be
created anyway.
Figure 3.9 shows the de�nition of a page. Each page is a node in a linked
list of pages, and contains a linked list of free allocation units. A description
of the individual �elds in a page follows.

next is a memory handle that refers to the next page in the linked list of
pages. The SharedMemHandle_NULL value is used to terminate the list.

lock is a shared lock , described in Section 3.9.3, used for synchronizing
access to this individual page. The lock protects the consistency of the
linked list of free units.

nof_units is the total number of allocation units contained in the page.
nof_free_units is the current number of free allocation units in the page

� equal to the length of the linked list of free units.
unit_size is the size of an allocation unit in this page. All the allocation

units of a page are of the same size.
unit_mask equals the allocation unit size minus one. This value can be used

as a bitmask to align a byte o�set to the boundary of two allocation
units (by performing a logical and).

head is the byte o�set, from the start of the page, of the �rst free allocation
unit. The �rst word of each free allocation unit contains the byte o�set
of the next, e�ectively implementing a linked list. An o�set of 0 is used
to terminate the list.

data marks the start of the data area of the page, where the allocation units
are actually stored. The allocation units are aligned according to their
size, meaning that there might be a gap of unused memory preceding
the very �rst allocation unit.

Note that the linked lists of pages use memory handles to implement the
�links�, while the linked lists of allocation units use the byte o�sets from the
start of the page for this purpose. Since they are located in shared memory,
neither of them uses pointers, for the reasons explained in Section 3.5.1.
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SharedHeap implements the alloc method by �rst selecting the smallest
allocation unit size that is large enough to ful�ll the request. Subsequently,
the corresponding list of pages is traversed until a non-empty page is found.
If all the pages are full, a new page is created and linked into the list. Finally,
one allocation unit is unlinked from the free list of the page, and the address
of the unit is returned. The actual size of the allocation unit is returned as
well, allowing the caller to make full use of the allocated memory block. If
the requested size is larger than the maximum size of an allocation unit, an
entire shared memory region is created to satisfy the request.
The free method releases an allocated unit by �rst determining what page
it is allocated in. This is done by performing a reverse mapping from
the address to a memory handle, using the SharedMemHandle_FromVoidPtr
function described in Section 3.5.1. The memory handle contains the o�set
of the address from the start of the shared memory region. By subtracting
this o�set from the address, the start of the page is found. Since a typical
implementation would have stored the allocation unit's o�set as a separate
word in the unit, this approach in e�ect saves a word in every allocated unit.
Once the start of page is found, the allocation unit can be linked into the
free list of the page, e�ectively releasing the memory.

3.3 Shareable and shared types

This section describes the requirements imposed on shareable types, and the
mechanisms used to create the equivalent shared types.

3.3.1 Declaration of shareable types

POSH maintains a so-called type map that maps all shareable types to their
equivalent shared types and proxy types. Shareable types are registered with
POSH using the allow_sharing function described in Section 3.11.1. This
triggers the creation of a corresponding shared type, using the SharedType
meta-type described in Section 3.3.3. Also, a new custom-tailored proxy
type is created, as described in Section 3.6.1. The relationship between the
shareable, shared and proxy types is stored in the proxy map, which is a
dictionary that maps the shareable type to a tuple containing the other two.
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3.3.2 Creation of shared objects

The process of sharing an object requires the allocation and initialization
of a shared object. As explained in Section 2.2.3, all values in Python are
objects, so the user needs to specify the initial value of the shared object
by passing an object. Consequently, this operation essentially amounts to
copying an existing object, placing the copy in shared memory.
A shareable type is required to support copy semantics , meaning that it can
be used to create copies of existing instances. The convention is that a type,
when called with an existing instance of the type as the only parameter,
returns a copy of the instance. This is the equivalent of providing a copy
constructor in the C++ language. For instance, int(2) returns a copy of the
integer 2, and tuple((1,2)) returns a copy of the given tuple. If the user
wants to share instances of a user-de�ned type, the type should implement
an __init__ method that follows the same convention.
POSH creates shared objects through the following sequence of steps.

• Firstly, the type of the object to be shared is examined, and its
corresponding shared type is retrieved from the type map described
in Section 3.3.1. If the type map contains no mapping for the type,
the object in question is not eligible for sharing, and an exception is
raised.
• Secondly, a new instance of the shared type is created, by calling the
shared type, passing the object to be shared as the only argument.
Since the shared type inherits the __init__ method of its shareable
base type, copy semantics will ensure that the new shared object is
equal to the original shareable one. However, since the shared type
overrides the allocation methods of its base type, the shared object is
allocated in shared memory.
• Finally, the shared object is wrapped in a proxy object before returned
to the caller.

POSHalso de�nes a built-in function named ShareObject that shares an
object without wrapping the result in a proxy object. This function is for
internal use, to enable shared containers to share the items that are assigned
to them, for immediate storage in the form of memory handles.
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class SharedType(type):
instanceheap = core.SharedHeap()
dataheap = core.SharedHeap()

if VERBOSE:
instanceheap = VerboseHeap("Instance heap" , instanceheap )
dataheap = VerboseHeap("Data heap", dataheap )

synch = MONITOR
10

def new (tp, name, bases, dct):
def wrap built in func(func):

return lambda *args, **kwargs: func(*args, **kwargs)

if len(bases) > 1:
raise ValueError, "this meta-type only supports single inheritance"

dct["__getattribute__" ] = wrap built in func( core.shared getattribute)
dct["__setattr__" ] = wrap built in func( core.shared setattr)
dct["__delattr__" ] = wrap built in func( core.shared delattr) 20

newtype = type. new (tp, name, bases, dct)

core.override allocation(newtype)
return newtype

Figure 3.10: Implementation of the SharedType meta-type.

3.3.3 The SharedType meta-type

As noted in Section 3.1, the general strategy for creating shared types is to
subtype the corresponding shareable types, overriding their allocation meth-
ods and attribute lookup methods. In addition, shared types should have
certain attributes that control the behaviour of their instances. As explained
in Section 3.2.3, the __instanceheap__ and __dataheap__ attributes refer
to heap objects that control the allocation of the shared type's instances
and their auxiliary data structures. Furthermore, the __synch__ attribute
de�nes the synchronization policy used for the shared objects, as described
in Section 3.8.1.
Section 2.4.4 describes how meta-types implement the creation of new types.
The implementation of SharedType , stripped of docstrings and comments,
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is short enough to �t in Figure 3.10. The type inherits from the standard
type meta-type, only extending the special __new__ method. As described
in Section 2.4.4, the e�ect of the class statement is a call to the speci�ed
meta-type. The e�ect of the call is de�ned by the type meta-type's special
__call__ method, which SharedType inherits. The __call__ method in
turn invokes the __new__ method de�ned by SharedType . This method is
mainly implemented by invoking type's implementation, which creates a new
type. In addition, three adaptations to the new type are made.

• Single inheritance is enforced, meaning that the new type can only
have one base type. This restriction is not really necessary, but as the
intended usage of the meta-type only involves single inheritance, it was
added as a safeguard against programming errors.
• The attribute lookup methods of the new type are overridden. This
is done by modifying the dictionary before passing it to type's
implementation. The allocation methods, which are described in detail
in Section 3.4.2, are implemented as built-in functions. This requires
them to be �wrapped� in Python functions to achieve the correct
binding behaviour. This workaround is needed due to an apparent
shortcoming in the Python language, that will hopefully be addressed
in future versions. The crux of the matter is that Python functions
implement the __get__ method described in Section 2.5.3, allowing
them to function as attribute descriptors, whereas built-in functions,
for no apparent reason, lack this method. This is arguably a small
matter, but since the wrapping incurs a performance penalty, not a
trivial one.
• The allocation methods of the new type are overridden. This is done
using a special purpose built-in function, as described in Section 3.4.2.

The SharedType meta-type also assigns values to its special
__instanceheap__ , __dataheap__ and __synch__ attributes. Since
the attributes of a meta-type serve as default values for the attributes of
its instances (which are types), these are the default values used for shared
types that refrain from specifying their own values. None of the shared types
de�ned by POSH de�ne the special heap attributes, which means that they
all use the heaps speci�ed by SharedType . However, specifying a di�erent
synchronization policy is common. Since the default policy enforces monitor
semantics, all immutable shared types de�ned by POSH assign None to the
__synch__ attribute, specifying that no synchronization is required.
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typedef struct {
Lock lock;
SharedMemHandle dicth;
Spinlock re�ock;
ProcessBitmap proxybmp ;
unsigned int srefcnt : sizeof (int)*8 − 2;
unsigned int is corrupt : 1;
unsigned int no synch : 1;
/* Start of normal PyObject structure */
PyObject pyobj; 10

} attribute ((packed)) SharedObject;

#de�ne SharedObject FROM PYOBJECT(ob) \
((SharedObject*) (((void*) (ob)) − o�setof (SharedObject, pyobj)))

#de�ne SharedObject AS PYOBJECT(shob) \
(&(((SharedObject*) (shob))−>pyobj))

#de�ne SharedObject AS PYVAROBJECT(shob) \
((PyVarObject*) &(((SharedObject*) (shob))−>pyobj)) 20

#de�ne SharedObject VAR SIZE(type, nitems) \
( PyObject VAR SIZE(type, nitems) + o�setof (SharedObject, pyobj))

void SharedObject Init(SharedObject* obj, PyTypeObject* type, int nitems);

Figure 3.11: De�nition of the SharedObject structure, and related macros
and functions.

3.4 Shared objects

This section describes the implementation of shared objects, which are
objects located in shared memory. Section 3.4.1 describes how shared objects
are represented in memory. Section 3.4.2 explains how shared objects are
allocated in shared memory. Section 3.4.3 describes how attributes are
implemented for shared objects.

3.4.1 Representation of shared objects

POSH associates additional data with each shared object by prepending it
to the object's data structure.
Conceptually, all shared types can be thought of as subtypes of a common
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SharedObject base type, that contains all the low-level implementation
details on which shared objects rely. However, this conceptual relationship
can not be directly re�ected in the actual implementation. The reason is
that Python disallows multiple inheritance involving more than one built-
in base type, as explained in Section 2.4.1. However, shared types are
generally subtypes of their shareable counterparts, as described in Section
3.1. Consequently, many of them already have a built-in base type, which
prevents them from subtyping another built-in type such as SharedObject
as well.
The fact remains that shared objects have many implementation details in
common, and somehow additional data structures must be associated with
each shared object. Section 2.4.2 explains how subtypes extend the object
structures of their base types by appending their data to the end. For
shared objects, the technique of appending data to the object's structure
is infeasible, since the size and lay-out of the object structures vary from
object to object. The solution chosen by POSH is instead to prepend the
additional data to the shared object's structure, adding a common header to
the representation of all shared objects. This is possible since the allocation
of shared objects needs to be overridden in any case. Thus, reserving space
for a header when the object is allocated is straightforward. Figure 3.11
shows the de�nition of the SharedObject header. A brief description of its
�elds is given here.

lock is a shared lock , as described in section 3.9.3, which is used for
protecting access to the shared object when implicit synchronization
is enabled.

dicth is a memory handle , as described in Section 3.5.1, that refers to
a shared dictionary. The shared dictionary is used to implement
attribute lookup on shared objects, as described in Section 3.4.3.

reflock is a spin lock , as described in Section 3.9.1, which is used to
synchronize the access to the proxybmp and srefcnt �elds.

proxybmp and srefcnt are used by the implementation of garbage collec-
tion for shared objects, described in section 3.7. The srefcnt lends a
few of its bits to the �ag �elds as a space optimization.

is_corrupt is a �ag used to signify that the shared object may be corrupted.
This can occur if a process terminates abnormally while accessing the
object, as described in section 3.10.4.

no_synch is a �ag used to optimize the synchronization protocol described
in section 3.8.1 in the case where implicit synchronization is disabled.
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PyObject* SharedObject Alloc(PyTypeObject* type, int nitems);
void SharedObject Free(PyObject* obj);

Figure 3.12: Allocation functions for the tp_alloc and tp_free method
slots of shared types.

pyobj marks the start of the shared object's regular object structure. What
data actually follows at this point is dependent on the actual type of
the shared object.

The approach of prepending a header to shared objects provides a non-
intrusive way to e�ectively extend their object structure, regardless of its
original length. The technique is non-intrusive, since shared objects retain
the capability of acting as regular Python objects, while code that is aware
of their shared nature can make use of the data structures in their headers.
Given a pointer to a SharedObject , it can be viewed as a regular PyObject
by taking the address of its pyobj member. Conversely, if an object
pointed to by a PyObject pointer is known to be shared, it can be
viewed as a shared object by subtracting the proper number of bytes from
the pointer and casting it to a SharedObject pointer. For convenience,
these conversions are performed using the SharedObject_AS_PYOBJECT and
SharedObject_FROM_PYOBJECT macros, listed in Figure 3.11. The �gure also
shows the de�niton of the SharedObject_Init function, which is used to
initialize the SharedObject header as well as the object structure of a shared
object. The SharedObject_VAR_SIZE macro calculates the number of bytes
needed for a shared object, including the header, and is used by the allocation
functions described in Section 3.4.2. The macro makes sure that extra space
is reserved to accomodate the shared objects' headers.

3.4.2 Overriding allocation of shared objects

POSH implements allocation functions for shared objects that delegate
the allocation to the heap object bound to the special __instanceheap__
attribute of the object's type.
As noted in Section 2.4, Python type objects contain method slots that de�ne
the behaviour of their instances, including their allocation and deallocation.
The speci�c method slots that control allocation and deallocation are named
tp_alloc and tp_free. POSH implements two functions, listed in Figure
3.12, that have the proper signature for these method slots.



CHAPTER 3. DESIGN AND IMPLEMENTATION 41

SharedObject_Alloc allocates a new instance of the given type. The
nitems parameter is 0 for �xed-size objects, and denotes the initial
value of the ob_size �eld in variable-size objects. The function
calculates the number of bytes needed for the object, using the
SharedObject_VAR_SIZE macro described in Section 3.4.1. It proceeds
by looking up the __instanceheap__ attribute of the type, delegating
the allocation to the heap object, just like the SharedAlloc function
described in Section 3.2.3. Finally, the shared object is initialized by
calling the SharedObject_Init function described in Section 3.4.1.

SharedObject_Free frees the memory occupied by an object, by delegating
the call to the instance heap associated with the object's type, just like
the SharedFree function described in Section 3.2.3.

Unlike most of the other method slots contained in a type object, the
tp_alloc and tp_free methods can not be implemented by Python
code. The only way to override the methods is to explicitly point the
method slots at appropriate functions, a task that must be performed
by C code. Therefore, POSH implements a small built-in function
named override_allocation , which installs the SharedObject_Alloc and
SharedObject_Free functions in the proper method slots of a type object.
This function is invoked by the SharedType meta-type on creation of a shared
type, as described in Section 3.3.3.

3.4.3 Attribute lookup for shared objects

POSH supports attributes for shared objects by associating a memory handle
for a shared dictionary with each shared object.
As described in Section 2.5.1, a dictionary may be associated with every
Python object, to provide storage for the object's attributes. However, the
attributes of a shared object cannot be stored in a regular dictionary; for this
purpose, a shared dictionary is required. Hence, POSH associates a memory
handle that refers to a shared dictionary with every shared object. This is
the dicth �eld of the SharedObject header described in Section 3.4.1.
When shared types are created by the SharedType meta-type described in
Section 3.3.3, the attribute lookup methods described in Section 2.5.2 are
overridden. The alternative implementation provided by POSH uses the
exact same algorithm described in Section 2.5.3, except that the object's
shared dictionary is used instead of the regular dictionary.
Since attributes of shared objects are stored in a shared dictionary, the
semantics of shared dictionaries apply to attributes as well. This implies that
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typedef struct
{
int regndx;
unsigned int o�set;

} SharedMemHandle;

void* SharedMemHandle AsVoidPtr(SharedMemHandle handle);
SharedMemHandle SharedMemHandle FromVoidPtr(void* ptr);

Figure 3.13: De�nition of the SharedMemHandle structure, and the related
mapping functions.

the values assigned to an attribute are shared implicitly, and the attribute
values are wrapped in proxy objects when read. Section 3.8.1 describes
how di�erent synchronization policies may be speci�ed for each shared type.
Even if no synchronization is speci�ed for a user-de�ned type, the attributes
of the shared object may be accessed safely, since the synchronization policy
speci�ed for shared dictionaries enforces monitor access semantics.

3.5 Shared container objects

Section 3.5.1 examines the general problems related to storing recursive data
structures in shared memory. It concludes that shared container objects
cannot rely on the implementation of the regular container objects, since
the latter reference other objects using direct pointers. As a consequence,
the shared container objects must be reimplemented using an alternative
mechansim for referencing other objects. Section 3.5.2 describes how this is
done for shared lists and tuples. Section 3.5.3 describes the implementation
of shared dictionaries.
When objects are assigned to a shared container, they are implicitly shared.
When shared objects are read from the container, they are implicitly wrapped
in proxy objects , as described in Section 3.6.

3.5.1 Memory handles

POSH uses memory handles to refer to locations in shared memory across
processes.
A well-known complication with using shared memory is that recursive data
structures allocated in shared memory cannot be represented using pointers.
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static int root = −1;

typedef struct {
void* start; /* First byte in the region */
void* end; /* Last byte in the region */
int left, right; /* These are indexes in the table */

} AttachedRegion;

static AttachedRegion at map[MAX REGIONS];

Figure 3.14: De�nition of the attachment map.

This is because shared memory regions may be attached at di�erent addresses
in di�erent processes. Therefore, a pointer cannot be stored in shared
memory unless it is guaranteed that what it points to is located at the same
address in all processes.
The implications of this are two-fold when it comes to allocating Python
objects in shared memory:

• Firstly, every object contains a type pointer, and there is no way to
change its meaning without rewriting Python from the ground up.
Thus, POSH must guarantee that the type objects pointed to by
shared objects are indeed located at the same address in all processes.
Furthermore, the method slots of type objects point to C functions.
In the presence of dynamically linked code, care must also be taken to
ensure that these functions have the same addresses in all processes.
The type object also contains pointers to its base classes and a pointer
to its docstring. All of these pointers must be valid for all the
participating processes. A simple way to ful�ll these requirements is to
use the fork system call provided by all POSIX-compliant platforms
to create new processes. This duplicates the entire memory lay-out
of the calling process, including all the type objects and functions in
question. As a consequence, however, types that should be shareable
must be registered prior to any fork calls. In practice, this is a small
limitation.
• Secondly, shared objects are allocated on heaps that grow dynamically,
creating new shared memory regions as needed. Thus, there is no
guarantee that they have the same address in all processes. This
implies that shared container objects (lists, tuples and dictionaries)
cannot store their references to other objects as plain PyObject
pointers. Some other mechanism is needed for referring to shared
objects across processes.
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POSH tackles the general problem of referring to locations in shared memory
across processes by introducing the concept of memory handles . A memory
handle consists of an identi�er for a shared memory region plus an o�set
in this region. This uniquely identi�es a memory location to every process,
regardless of where the region is attached. The actual data structure that
implements a memory handle is shown in Figure 3.13. The regndx �eld of
the SharedMemHandle structure is the shared memory region's index in the
region table described in Section 3.2.1. The offset �eld is the o�set in bytes
from the start of the memory region to the location in question.
Whenever a process needs to access a memory location referred to by a
memory handle, the handle must be converted to a pointer. Conversely,
a process may wish to store a handle to a memory location for which
it only has a pointer; this requires converting the pointer to a handle.
These operations are implemented by the SharedMemHandle_AsVoidPtr and
SharedMemHandle_FromVoidPtr functions, also listed in Figure 3.13. Their
implementation relies on a data structure called the attachment map , listed
in Figure 3.14. Every process has its own private copy of the attachment
map (it is not a part of the globally share data described in Section 3.2.1).
The data structure records which shared memory regions are attached in
the process' address space, and at what addresses. It is implemented as an
array, in which every shared memory region has the same index as in the
region table described in section 3.2.1. Each array entry also contains left
and right �elds, which hold the indexes of other entries. This allows the
array to be viewed as a binary search tree as well. The root entry's index is
stored in the root variable.
This particular data structure was designed to allow very e�cient (linear-
time) mapping from memory handles to pointers, as well as e�cient
(logarithmic-time) reverse mappings from pointers to memory handles.

SharedMemHandle_AsVoidPtr uses the attachment map to implement
constant-time handle-to-pointer mappings, by simply retriev-
ing the starting address of the shared memory region from
at_map[handle.regndx] , and adding the appropriate o�set.

SharedMemHandle_FromVoidPtr implements the reverse mapping by view-
ing the attachment map as a binary search tree, searching it for an
attached region that contains the given address. Being a binary search,
this operation is performed in logarithmic time on average. POSH
ensures that this is also the worst-case performance, by regenerating
an optimal search tree every time a new shared memory region is
attached. This is considered worthwhile, since the attachment of a
shared memory region is a very rare event compared to the reverse
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typedef struct
{
PyObject VAR HEAD
int capacity;
SharedMemHandle vectorh ;

} SharedListBaseObject ;

typedef struct
{
PyObject VAR HEAD 10
SharedMemHandle vector [1];

} SharedTupleBaseObject ;

Figure 3.15: Object structures of the SharedListBase and SharedTupleBase
types.

mapping from a pointer to a memory handle. The optimal search
tree is generated by sorting the shared memory regions according to
the addresses at which they're attached, and recursively picking the
median as the root entry. This algorithm executes in O(n log n), as a
consequence of the requirement to sort the regions.

As described in Sections 3.5.2 and 3.5.3, POSH implements shared versions
of the standard container types using memory handles instead of pointers to
store the references to other objects.

3.5.2 Shared lists and tuples

Section 3.1 explains how shared types normally subtype their shareable
counterparts, using a special meta-type that adapts the new type to enable
sharing of its instances. As explained in Section 3.5.1, this is not possible
for shared container objects, since they cannot rely on the implementation
provided by the standard container types. However, the approach of
producing shared types through inheritance is attractive for its simplicity.
As a consequence, the strategy employed by POSH to implement shared
container objects, is to implement suitable base types for the actual shared
types. To this end, POSH implements the built-in SharedTupleBase and
SharedListBase types, that implement the most basic operations of shared
tuples and lists. These are subsequently subtyped from Python code to
produce the SharedTuple and SharedList types. This allows some of the
methods to be implemented in Python code, simplifying the implementation.
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static PyObject*
vector item(SharedMemHandle* vector, int size, int index)
{

SharedObject* obj;

if (index < 0)
index += size;

if (index < 0 | | index >= size) {
PyErr SetString(PyExc IndexError, "index out of range" );
return NULL; 10

}
obj = (SharedObject*) SharedMemHandle AsVoidPtr(vector[index]);
assert(obj != NULL);
return MakeProxy(obj);

}

Figure 3.16: The vector_item function.

There are many similarities between lists and tuples in Python. Both types
implement a sequence of objects, and support reading operations such as
iteration, indexing and slicing. Moreover, they support repetition (using the
* operator), concatenation (using the + operator) and comparisons. The
main di�erence is that lists are mutable objects, supporting self-modifying
operations such as insertion and sorting, while tuples are immutable,
meaning that they remain in their initial state throughout their lifetime.
In recognition of their similarities, POSH implements shared lists and
tuples using a common code base, sharing implementation details wherever
appropriate.
Section 2.3 explains the basics of how Python objects are represented. The
main abstraction used in the representation of shared lists and tuples is the
vector . A vector is simply an array of memory handles, in which each memory
handle refers to another shared object. Given that they consist of memory
handles, vectors can be stored unambiguously in shared memory. Shared
lists and tuples both maintain a vector, which holds all their references to
other objects. However, shared lists require the ability to resize their vector,
since the number of items in a list may change. Therefore, the vector isn't
stored in the object structure itself, but as an auxiliary data structure that
can be resized as needed. A single memory handle that refers to the vector
is stored in the object structure. Consequently, shared lists are �xed-size
objects, just like the standard list type. Tuples, on the other hand, retain
their initial size throughout their lifetime, so they can embed the vector
directly in their object structure. Like the standard tuple type, shared
tuples are implemented as variable-size objects. The di�erence is that the
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static int
vector ass item(SharedMemHandle* vector, int size, int index, PyObject* value)
{

SharedObject* olditem;
SharedObject* newitem;

if (index < 0)
index += size;

if (index < 0 | | index >= size) {
PyErr SetString(&PyExc IndexError, "index out of range" ); 10
return −1;

}
newitem = ShareObject(value);
if (newitem == NULL)

return −1;
SharedObject IncRef (newitem);
olditem = (SharedObject*) SharedMemHandle AsVoidPtr(vector[index]);
SharedObject DecRef (olditem);
vector[index] = SharedMemHandle FromVoidPtr(newitem);
return 0; 20

}

Figure 3.17: The vector_ass_item function.

class SharedTuple( core.SharedTupleBase):
metaclass = SharedType
slots = [ ]

def getslice (self, i, j):
indices = range(len(self))[i:j]
return tuple([self [i] for i in indices])

def str (self):
items = map(repr, self) 10
return "("+", ".join(items)+")"

Figure 3.18: Excerpt of the SharedTuple type's implementation.

items of regular tuples are stored as pointers, while memory handles serve
the same purpose in shared tuples. Figure 3.15 shows the object structures
of the SharedListBase and SharedTupleBase types.
As an examle of the low-level code, 3.16 shows the vector_item function.
It operates on a vector, which could either belong to a shared list or a
shared tuple. It is used to implement the special __getitem__ method that
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class SharedList( core.SharedListBase):
metaclass = SharedType
slots = [ ]

def getslice (self, i, j):
indices = range(len(self))[i:j]
return [self [i] for i in indices]

def extend(self, seq):
if seq is not self : 10

# Default implementation, uses iterator
for item in seq:

self.append(item)
else:

# Extension by self, cannot use iterator
for i in range(len(self)):

self.append(self [i])

Figure 3.19: Excerpt of the SharedList type's implementation.

speci�es the e�ect of indexing an object (using brackets). The function
accepts a pointer to the vector, its size, and the index of the item to
retrieve. After checking for bounds errors, a reference to the shared object is
retrieved by mapping the corresponding memory handle to a pointer, using
the SharedMemHandle_AsVoidPtr function described in Section 3.5.1. As
explained in Section 3.6, all shared objects must be wrapped in proxy objects
before they are made accessible to Python code. Therefore, the function
wraps the return value in a proxy object using the MakeProxy function
described in Section 3.6.
A similar function, vector_ass_item , implements assignment into a vector.
Figure 3.17 shows its implementation, which is used by shared lists to
implement the special __setitem__ method. This method speci�es the e�ect
of assigning an item to an index in the object. (Shared tuples have no
such method, since they are immutable). Assigning an item to a shared
container will implicitly share the item. The vector_ass_item function
calls the ShareObject function described in Section 3.3.2 for this purpose.
It proceeds to store a reference to the shared object, by mapping its address
to a memory handle using the SharedMemHandle_FromVoidPtr function
described in Section 3.5.1. As a part of that operation, it has to increase
the reference count of the shared object using the SharedObject_IncRef
function described in Section 3.7. Conversely, it needs to decrease the
reference count of the old item, whose reference it overwrites. This is done
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class SharedDict( core.SharedDictBase):
"""Dictionary type whose instances live in shared memory."""
metaclass = SharedType
slots = [ ]

Figure 3.20: Implementation of the SharedDict type.

typedef struct {
PyObject HEAD
int �ll;
int used;
int mask;
SharedMemHandle tableh ;

} SharedDictBaseObject ;

typedef struct {
int state; 10
long hash;
SharedMemHandle keyh ;
SharedMemHandle valueh ;

} Entry;

Figure 3.21: Object structure of the SharedDictBase type, and de�niton of
a hash table entry.

using the SharedObject_DecRef function, which may trigger the destruction
of the old value if there are no other references to it.
Figure 3.18 shows an excerpt of the SharedTuple type's implementation,
which illustrates how some operations are implemented in Python code. In
the �gure, the __getslice__ and __str__ methods are implemented by
relying on the __getitem__ method implemented by the base type. Note
the special __metaclass__ attribute, which causes the class statement to
use the SharedType meta-type described in Section 3.3.3 for the creation
of the shared type. Figure 3.19 shows an excerpt of the SharedList
type's implementation, in which the __getslice__ and extend methods are
implemented. The latter relies on the append method, which is implemented
by the base type.
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3.5.3 Shared dictionaries

In the implementation of shared dictionaries, a strategy similar to the one
used by shared lists and tuples was chosen. The strategy involves the
implementation of a built-in base type, which is subtyped with Python code
to add the functionality that can be implemented at a higher level. However,
when mirroring the implementation of regular dictionaries, it turned out that
the number of inter-dependencies largely dictated that all of the functionality
was implemented in C. Consequently, the built-in SharedDictBase type
essentially provides the entire implementation of shared dictionaries, while
the SharedDict type is created merely to apply the adaptations made by
the SharedType meta-type. Figure 3.20 lists the implementation of the
SharedDict type in its entirety.
Python dictionaries are associative containers implemented using open
addressing hashing. The keys of a dictionary must be hashable, meaning
that they implement a special __hash__ method that calculates a hash code
for the object. In addition, the key must support equality comparisons in a
way that is consistent with the hash codes. The central data structure in a
dictionary is a hash table, which has a size that is some power of two. The
entry to which a speci�c key maps is found by using the appropriate number
of bits from its hash code, starting with the least signi�cant bits. Collisions
are resolved by taking more of the leading bits into account, calculating a
new index until a free entry is found. The use of open addressing hashing
implies that deleted entries cannot simply be cleared; this could make other
key lookups fail erroneously. Thus, deleted entries are marked as deleted, but
still occupy their entries. This means that the number of occupied entries
in the hash table may increase, even as the number of keys in the dictionary
decreases. The percentage of occupied entries in the hash table is known
as its �ll factor , and when it reaches a certain threshold, all the keys in
the table are rehashed, building a completely new table. This is known as
resizing the hash table, even though its size may very well remain the same,
or even decrease, during such an operation.
POSH implements shared dictionaries using the exact same algorithms as the
implementation of regular dictionaries. This implies that the same behaviour
can be expected for operations whose e�ect is not formally de�ned, such as
the order in which an iteration visits the keys in the dictionary. It should
be emphasized, however, that such properties of dictionaries should never
be relied on in any case, since they may change as a result of a modi�ed
implementation. Shared dictionaries rely on shared objects to have the
same hash functions as their shareable equivalents, which is a reasonable
expectations, since shared types will generally inherit the special __hash__
method from the shareable type. The only exceptions are shared tuples,
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whose implementation does take care to implement the same hash function
as regular tuples.
Figure 3.21 shows the object structure for shared dictionaries, as well as the
de�niton of a single hash table entry. A description of the �elds in the object
structure follows.

fill counts the number of entries in the hash table that are either occupied
or deleted. When this count reaches a certain threshold, the hash table
is resized.

used counts the number of entries in the hash table that are occupied, which
equals the number of keys in the dictionary.

mask is the current size of the hash table minus one. This value is more
useful than the actual size, since it can be used as a bitmask to extract
the appropriate number of least signi�cant bits from a hash code.

tableh is a memory handle that refers to an array of hash table entries,
which forms the hash table of the dictionary. The state �eld of a
hash table entry indicates the current state of that entry, which may
be either free, occupied or deleted. In the case of an occupied entry,
the hash �eld contains the cached hash code of the key, and the keyh
and valueh �elds are memory handles for the entry's key and value,
respectively.

The hash table of the shared dictionary is allocated as an auxiliary data
structure on the type's data heap , using the interface described in Section
3.2.3.
As is the case for shared lists, the items assigned to a shared dictionary
are implicitly shared. Likewise, values read from the dictionary are always
wrapped in proxy objects to protect them from direct access. For the speci�c
details of the SharedDictBase implementation, the reader is referred to the
�SharedDictBase.c� �le in the source code listings.

3.6 Proxy objects

This section explains how proxy objects control the access to shared objects
in order to enforce proper synchronization and garbage collection.
posh protects shared objects from direct access by wrapping them in proxy
objects . The primary purpose of this is to enable satisfactory garbage
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PyObject* MakeProxy(SharedObject* obj);

Figure 3.22: De�nition of the MakeProxy function.

collection of shared objects, as described in section 3.7. It also provides the
opportunity to apply implicit synchronization of the operations performed
on shared objects. POSH never allows Python code to operate directly on
shared objects, with the one exception of the self argument, as described
in Section 3.6.2.

3.6.1 Creation of proxy objects

As explained in Section 3.7, a requirement of the multi-process garbage
collection algorithm is that a given shared object has at most one proxy
object in any process.
POSH de�nes a factory function for the creation of proxy objects, MakeProxy ,
which ensures that this requirement is met. The MakeProxy function, whose
de�nition is shown in Figure 3.22, maintains a weak-valued dictionary known
as the proxy map . This is a dictionary in which the values are referred to
by weak references. The dictionary maps the addresses of shared objects to
their corresponding proxy objects, with an entry for every shared object that
has a proxy object in the process. The keys in the dictionary are stored as
instances of the Address type described in Section 3.2.3, while the values are
weak references to proxy objects. When MakeProxy is called, it checks the
proxy map to see if it has an entry for the address of the given shared object.
If so, that proxy object is returned, and the creation of another proxy object
is avoided. If the proxy map has no entry for the shared object's address,
a new proxy object is created and inserted into the proxy map. Since the
values in the proxy map are weak references, the presence of the proxy map
does not prevent the normal deletion of proxy objects. When a proxy object
is deleted, the semantics of weak references ensure that it is removed from
the proxy map.
The actual creation of proxy objects is done by looking up the proxy type that
corresponds to the shared object's type in the type map described in Section
3.3.1. Subsequently, the proxy type is instantiated, passing a reference to the
shared object, which creates a proxy objects that wraps the shared object.
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typedef struct {
PyObject HEAD
SharedObject* referent;
PyObject* weakre�ist;

} ProxyObject;

Figure 3.23: Object structure of Proxy objects.

>>> import posh
>>> lst = posh.share([1,2])
>>> type(lst)
<type 'posh._proxy.SharedListProxy'>

>>> lst. call method('append', (3,), {})
>>> lst.append(4)
>>> lst
[1, 2, 3, 4]

Figure 3.24: Interpreter session illustrating usage of the _call_method
method.

3.6.2 Creation of custom-tailored proxy types

Section 3.6 describes proxy objects, which are used to control the access
to shared objects. Proxy objects should implement the same interface as
the shared objects they wrap, making their presence transparent to the user.
This requires one distinct proxy type for each shared type in existence. POSH
relies on the dynamic nature of Python to generate new proxy types as
needed.
POSH de�nes a built-in type named Proxy, which implements the basic
functionality needed for proxy objects, and is designed to serve as a base
type for all proxy types. To tailor the interface of a proxy type to mimic
that of a speci�c shared type, special attribute descriptors are used. Section
2.5.3 describes the basics of attribute descriptors.
Figure 3.23 shows the object structure de�ned for proxy objects. Each proxy
object has a pointer to its referent , which is the shared object that the proxy
object wraps. The weakreflist is used by the Python runtime to support
weak references to the proxy object, which is required by the MakeProxy
function described in Section 3.6.1.
Proxy objects implement a single access point to their referent, which
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>>> type(lst). dict ['append']
<posh. proxy.ProxyMethodDescriptor object>

>>> type(lst.append)
<type 'posh._proxy.ProxyMethod'>

>>> a = lst.append
>>> a(5)
>>> lst
[1, 2, 3, 4, 5] 10

Figure 3.25: Continuation the interpreter session in Figure 3.24.

provides the only way for Python code to access a shared object. This is a
method named _call_method , which dispatches a method call to the shared
object. The caller passes the name of the method to be invoked, along with
the arguments to the method. The positional arguments to the method are
passed as a tuple, and the keyword arguments as a dictionary. _call_method
thus takes three arguments, regardless of the arguments required by the
method call it dispatches. Figure 3.24 shows an interpreter session that
invokes the append method of a shared list in two di�erent ways. The �rst
one is an explicit call to _call_method , which is cumbersome and in no
way meets the transparency requirements for proxy objects. The second
invocation of append, however, uses the regular method call syntax, and
would work on a regular list object as well. POSH implements support for
the latter by means of customized attribute descriptors.
As explained in Section 2.5.3, attribute descriptors provide great �exibility
in customizing the attributes of objects. POSH tailors the interface of a
proxy type by adding special ProxyMethodDescriptor descriptors to it at
creation. One such descriptor is added for each of the methods supported by
the shared object. The descriptors return special proxy methods when their
attribute is read, which are callable objects that actually dispatch the call
to the _call_method method. This allows the normal method call syntax
to be used, while preserving _call_method as the only access point to the
shared object. Figure 3.25 shows a continuation of the interpreter session in
Figure 3.24, which illustrates how the append method is implemented as an
instance of the ProxyMethod type. Figure 3.26 shows a slightly abbreviated
implementation of the ProxyMethodDescriptor and ProxyMethod types.
Some error checks have been omitted, as well as the __str__ and __repr__
methods of the types.
With the availability of proxy methods and their descriptors, producing
a proxy type that supports a given interface is a simple matter. The



CHAPTER 3. DESIGN AND IMPLEMENTATION 55

class ProxyMethod(object):
def init (self, inst, cls, mname):

self.proxy inst = inst
self.proxy cls = cls
self.mname = mname
self.cname = cls. name

def call (self, *args, **kwargs):
if self.proxy inst is None:

# Call to unbound proxy method 10
return args[0]. call method(self.mname, args[1:], kwargs);

else:
# Call to bound proxy method
return self.proxy inst. call method(self.mname, args, kwargs);

class ProxyMethodDescriptor (object):
def init (self, mname):

self.mname = mname
20

def get (self, inst, cls):
return ProxyMethod(inst, cls, self.mname)

def set (self, inst, value):
raise TypeError, "read-only attribute"

Figure 3.26: Implementation of the ProxyMethod and
ProxyMethodDescriptor types.

required steps are to subtype the built-in Proxy type, and add one
ProxyMethodDescriptor object to the new type for each of the methods
in the referent's type. Figure 3.27 shows the implementation of the
MakeProxyType function, which uses this approach to create a proxy type
that mimics the interface of a given shared type.
Since the purpose of proxy objects is to shield shared objects from direct
references, forcing all references to go to the proxy object instead, some
restrictions must be imposed on shared objects regarding their self argu-
ment.1While the other arguments passed to shared objects are either non-
shared or wrapped in proxy objects, this would contradict the language itself
with regard to the self argument, since it is supposed to be an instance of
the type being called. This implies that the self argument must be a direct
reference to the shared object. Consequently, a general restriction imposed
on shared objects is that they cannot store their self argument in a way

1self is by convention the name of the �rst argument of an instance method.
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method desc types = (type(list. add ), type(list.append),
types.UnboundMethodType)

def MakeProxyType(reftype):
d = {"__slots__": [ ]}
for attrname in dir(reftype):

if not hasattr( core.Proxy, attrname):
attr = getattr(reftype, attrname)
if type(attr) in method desc types: 10

d[attrname] = ProxyMethodDescriptor (attrname);
name = reftype. name +"Proxy"
return type(name, ( core.Proxy,), d)

Figure 3.27: Implementation of the MakeProxyType function.

void SharedObject IncRef (SharedObject* obj);
void SharedObject DecRef (SharedObject* obj);
void SharedObject SetProxyBit(SharedObject* obj);
void SharedObject ClearProxyBit(SharedObject* obj);

Figure 3.28: Low-level interface used for garbage collection of shared objects.

that makes it persist beyond the lifetime of the method call, since that would
make it available to Python code, without the protection of a proxy object.
For example, storing self in a global variable is not allowed for shared
objects. This restriction is not enforced in any way, since that would be
nearly impossible, but types that violate the rules may get unde�ned results.
If a shared object needs to store a reference to itself, it should store a reference
to its own proxy object, which can be obtained by calling posh.share(self) .
Another issue is that some methods by convention return self, for instance
the special method to implement in-place addition, named __iadd__ . This
is allowed, but the implementation of the _call_method method will detect
it and automatically wrap the return value in a proxy object.

3.7 Garbage collection of shared objects

POSH implements garbage collection of shared objects using an alternative
garbage collection algorithm that associates a process bitmap and a counter
with each shared object.
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As described in Section 2.6.1, python implements garbage collection through
reference counting, maintaining a simple reference count for each object.
This reference count is updated using the Py_INCREF and Py_DECREF
macros, which increment and decrement the count without any form of
synchronization. Consequently, it will not work correctly for shared objects,
which can be accessed concurrently by multiple processes. Furthermore,
using a single reference count per object makes it impossible to avoid memory
leaks when processes terminate abnormally, since no knowledge is maintained
about the number of references any particular process holds to an object.
A garbage collection algorithm for shared objects must be able to account
for references from all live processes, and should be able to correct the
reference counts of shared objects when processes terminate abnormally.
POSH implements an alternative garbage collection algorithm for shared
objects that meets these requirements. It builds on the observation that
references to shared objects fall within one of two categories.

• References stored in a process' address space. This may be thought of
as a reference leading from a process to the shared object.
• References stored (as a memory handle) in another shared object. This
may be thought of as a reference leading from one shared object to
another.

If the issue were simply to count the number of references in either of these
categories, a single counter would su�ce. In order to maintain knowledge
about which speci�c processes hold references to an object, one counter per
process is required. This seems to be quite expensive in terms of space.
However, references from a process to a shared object are always wrapped
in proxy objects , as described in Section 3.6. Furthermore, a caching system
ensures that each process holds at most one proxy object for any given
shared object. A process may have many references to the proxy object
of a shared object, but only one such proxy object. In e�ect, the proxy
object multiplexes the references to the shared object. This means that a
shared object only needs to know the set of processes holding a proxy object
for it. This set of processes can be implemented as a bitmap, as explained
in section 3.10.1. From another viewpoint, the bitmap represents a binary
reference count per process.
Maintaining such a bitmap consequently accounts for all references in the
�rst category listed above. To account for references in the second category,
leading from one shared object to another, a separate count is maintained.
Together, the bitmap and the counter constitute the state that must be
maintained for each shared object. When all the bits in the bitmap are
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synch.enter(obj, opname) −> rv
synch.leave(obj, rv) −> None

Figure 3.29: Interface supported by a synchronization policy object synch.

cleared (indicating that no process has a proxy object for it), and the counter
is 0, the shared object can (and should) be deleted.
The state required by this algorithm is maintained as the proxybmp and
srefcnt �elds of the SharedObject structure described in Section 3.4.1. Ac-
cess to the �elds is synchronized using the reflock �eld, which is an instance
of the spin locks described in Section 3.9.1. Figure 3.28 lists the low-level
garbage collection interface de�ned by POSH. The SharedObject_IncRef
and SharedObject_DecRef functions are used by shared container objects
described in Section 3.5 to update the srefcnt �eld, as items are assigned
to or deleted from a shared container. The SharedObject_SetProxyBit
and SharedObject_ClearProxyBit functions are used exclusively by the
implementation of proxy objects. On creation, a proxy object sets the bit
in the shared object that it refers to, and when the proxy object is deleted,
the bit is cleared. The process index , described in Section 3.10.1, determines
which bit in the bitmap that should be modi�ed.
The normal reference count, ob_refcnt , has no meaning for shared objects,
and is initialized to 230. This value is chosen so that C code that views
shared objects as regular PyObjects, can use the Py_INCREF and Py_DECREF
macros without harm, as long as the operations performed are neutral with
regard to the reference count. The unsynchronized access to the ob_refcnt
leads to the theoretical possibility of lost updates , which could be a problem
if the reference count reached 0 or over�owed. However, the probability of a
lost update incorrectly modifying the reference count in the same direction a
total of 230 times is so extremely low that the possibility can be disregarded.

3.8 Synchronizing access to shared objects

POSH allows for implicit synchronization of the access to shared objects, by
associating a synchronization policy with each shared type.
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static PyObject*
enter(PyObject* self, PyObject* args)
{
PyObject* obj;
PyObject* opname = NULL;
SharedObject* shobj;

if (!PyArg ParseTuple(args, "O|S", &obj, &opname))
return NULL;

shobj = SharedObject FROM PYOBJECT(obj); 10

if (Lock Acquire(&shobj−>lock))
return NULL;

Py INCREF(Py None);
return Py None;

}

static PyObject*
leave(PyObject* self, PyObject* args) 20
{
PyObject* obj;
PyObject* ignored = NULL;
SharedObject* shobj;

if (!PyArg ParseTuple(args, "O|O", &obj, &ignored))
return NULL;

shobj = SharedObject FROM PYOBJECT(obj);

Lock Release(&shobj−>lock); 30

Py INCREF(Py None);
return Py None;

}

Figure 3.30: Implementation of the built-in Monitor type's enter and leave
methods.

3.8.1 Synchronization policies

The synchronization requirements for a shared object may vary greatly.
Mutable objects such as shared lists and dictionaries usually require
synchronization to protect the consistency of their data structures, given
that multiple processes may access the objects concurrently. There are still
cases, however, where the user is able to guarantee that the shared object's
consistency is maintained, for example by applying synchronization at a
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>>> import posh
>>> i = posh.share(3)
[7060] Instance heap: Allocating 72 bytes at address 0x5004c080 (size 128).

>>> j = posh.share(7)
[7060] Instance heap: Allocating 72 bytes at address 0x5004c100 (size 128).

>>> i*j
[7060] Monitor: Entering mul on SharedInt object at 0x5004c0bc
[7060] Monitor: Entering mul on SharedInt object at 0x5004c13c 10
[7060] Monitor: Leaving mul on SharedInt object at 0x5004c13c
[7060] Monitor: Leaving mul on SharedInt object at 0x5004c0bc
21

Figure 3.31: Interpreter session using POSH in verbose mode.

higher level, with larger granularity. Immutable objects such as integers,
strings and tuples clearly don't require any synchronization to protect their
data structures, since these are never modi�ed. User-de�ned types classify
as mutable objects if they support attribute assignment.
In response to the varying requirements, POSH allows synchronization
policies to be associated with each shared type. A synchronization policy is
speci�ed by assigning a special policy object to the shared type's __synch__
attribute. None is a legal value for the attribute, in which case no
synchronization is applied. If the attribute has another value, the object
it refers to must support the interface listed in Figure 3.29.
To gain access to a shared object, the enter method must be invoked, passing
the object to which access is desired, along with a string identifying the
operation to be performed. For method calls, the string equals the name
of the method. For other generic operations, invoked by low-level C code,
the name corresponds to the special attribute name associated with that
operation. For instance, the name used to specify comparison is __cmp__.
When the enter method returns, the caller is free to access the shared object
in question. When done, the leave method is invoked, passing the shared
object, along with the return value from the enter call.
This protocol was designed to allow policy objects the �exibility to
implement a wide range of synchronization policies, which may or may
not take into account the actual operations the caller wishes to perform.
The requirement that the return value from enter to is passed to leave
e�ectively allows the policy object to have the callers maintain its state,
which may simplify its implementation. Since POSH currently provides just
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a single implementation of policy objects, it is hard to make any quali�ed
statements about the appropriateness of the protocol. More experience with
the implementation of policy objects is required to reveal any design �aws
in the protocol.
As an example of the extensibility that policy objects provide, POSH
implements a type named VerboseSynch that is used when POSH executes
in verbose mode. VerboseSynch instances are wrapper objects that
implement the synchronization protocol by delegating all calls to another
synchronization policy object. The VerboseSynch only adds verbose output
to the console, and does not change the access semantics of the object in any
way. The output provided by the verbose policy object provides very valuable
insights in the �ow of the program. Figure 3.31 shows an interpreter session
in which posh operates in verbose mode. The output reveals the nonobvious
fact that a multiplication of two shared objects causes the synchronization
protocol to be carried out for both of them, in turn. The �gure also shows
the output produced by the verbose heaps described in Section 3.2.3.
The general approach of using a synchronization protocol for every access
to a shared object clearly incurs a performance penalty for shared objects
that don't require synchronization. To minimize this performance penalty,
the nosynch �ag is reserved in the SharedObject header described in
Section 3.4.1. If the �ag is set, it indicates that the shared object's type
has a __synch__ attribute equal to None. Checking this �ag is obviously
considerably faster than performing the attribute lookup on each access.
Note that the state maintained for all shared objects, stored in the
SharedObject header described in Section 3.4.1, may also be accessed con-
currently by multiple processes, even for immutable objects. However, access
to these �elds is synchronized by separate synchronization mechanisms, as
described in the relevant sections.

3.8.2 The Monitor type.

POSH provides one implementation of policy objects, apart from the
VerboseSynch type described in Section 3.8.1. This is the built-in Monitor
type, which enforces monitor access semantics for shared objects.
Monitor objects make use of the shared lock , described in Section 3.9,
that is associated with every shared object. It is accessible as the lock
�eld of the SharedObject header described in Section 3.4.1. Note that
other synchronization policies may very well ignore the lock �eld, as is the
case when the __synch__ attribute is None. Thus, the memory occupied
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PyObject* SharedObject Enter(SharedObject* obj, PyObject* opname);

PyObject* SharedObject EnterString(SharedObject* obj, char* opname,
PyObject** opname cache);

void SharedObject Leave(SharedObject* obj, PyObject* state);

Figure 3.32: Low-level interface for adhering to the synchronization protocol.

PyObject* SharedObject Repr(SharedObject* obj);
PyObject* SharedObject Str(SharedObject* obj);
long SharedObject Hash(SharedObject* obj);
int SharedObject Print(SharedObject* obj, FILE* fp, int �ags);
int SharedObject Compare(SharedObject* a, PyObject* b);
PyObject* SharedObject RichCompare(SharedObject* a, PyObject* b, int op);
int SharedObject RichCompareBool(SharedObject* a, PyObject* b, int op);

Figure 3.33: Utility functions that mirror the Python/C API, while adhering
to the synchronization protocol.

by the locks of some shared objects is essentially wasted. However, the
SharedObject header provides the easiest way of associating data structures
with shared objects, and allowing the header to vary in size would complicate
the implementation nontrivially. Therefore, a design choice was made to
tolerate this space wastage in favour of a simple implementation.
The Monitor type implements a synchronization policy that enforces monitor
access semantics for shared objects. Figure 3.30 lists its implementation of
the enter and leave methods. Apart from the standard code to parse
arguments and build a return value, the methods are almost trivial. They
respectively acquire and release the shared object's lock, using the interface
described in Section 3.9.3, and simply ignore their second arguments.

3.8.3 Applying synchronization to shared objects

The �rst step in synchronizing access to shared objects is to identify their
potential access points. As explained in Section 3.6.2, the only way for
Python code to access a shared object is through the _call_method method
of its proxy object. This was a deliberate design choice to provide a single
access point at which to apply synchronization. Another issue is the potential
for low-level C code to access shared objects.
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POSHde�nes a low-level C interface for using the synchronization protocol
described in Section 3.8.1. The interface is listed in Figure 3.32.

SharedObject_Enter accepts a pointer to a shared object, and a Python
string object containing the name of the operation. The latter is passed
on the enter method of the given object's policy object, which is found
by looking up the special __synch__ attribute.

SharedObject_EnterString is a slightly more complicated version of
SharedObject_Enter that accepts a null-terminated C string as the
name of operation. The last argument points to a statically declared
pointer, and is used to cache a Python string object that contains the
C string. This is a performance optimization to avoid the frequent
construction and destruction of Python string objects.

SharedObject_Leave calls the leave method of the given shared object's
policy object. For convenience, this function will execute even if
an exception has been raised, re-raising the exception when done.
This allows shared objects to raise exceptions without disrupting the
synchronization protocol.

Synchronization of the accesses made by Python code is straightfor-
ward, given the one and only access point provided by the Proxy
type. Its implementation of the _call_method method simply calls the
SharedObject_Enter and SharedObject_Leave before and after dispatching
the call.
As for low-level C code, it needs to follow the synchronization protocol
whenever it accesses a shared object. For convenience, a set of functions
is de�ned that mirrors some common functions in the Python/C API, while
adhering to the synchronization protocol. Figure 3.33 lists these functions.
By replacing the SharedObject pre�x with PyObject , the names of the
corresponding Python/C API functions are obtained. These functions are
mainly used by the low-level implementations of shared lists, tuples and
dictionaries, which are described in Section 3.5.
In general, references to shared objects should not be passed to code that is
unaware of their shared nature, unless access to the object has already been
obtained. If access has not been obtained, the only safe approach is to pass
a reference to the shared object's proxy object, which can be obtained by
means of the MakeProxy function described in Section 3.6.1. This is generally
how shared objects should be passed to third-party C code.
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static inline void acquire(int *mutex)
{

asm volatile (" movl %0,%%eax \n"
"1: lock \n"
" btsl $0, 0(%%eax) \n"
" jc 1b \n"
:
:"m"(mutex)
:"eax");

} 10

static inline void release(int *mutex)
{

asm volatile (" movl %0,%%eax \n"
"1: lock \n"
" andl $0, 0(%%eax) \n"
:
:"m"(mutex)
:"eax");

} 20

Figure 3.34: The acquire and release functions used to implement spin
locks.

3.9 Synchronization primitives

The basic synchronization primitives employed by POSH are reentrant locks
located in shared memory. The current implementation of such shared locks
requires two basic services.

• An implementation of spin locks , which are light-weight locks that are
obtained through busy waiting. Section 3.9.1 describes how POSH
implements spin locks.
• A way for processes to sleep, and a way to wake other sleeping
processes. Section 3.9.2 describes the sleep table , which is used to
implement this service.

3.9.1 Spin locks

POSH de�nes the low-level interface listed in Figure 3.35, which is used to
access spin locks.
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typedef int Spinlock;

void Spinlock Init(Spinlock* spinlock);
void Spinlock Destroy(Spinlock* spinlock);
void Spinlock Acquire(Spinlock* spinlock);
void Spinlock Release(Spinlock* spinlock);

Figure 3.35: Low-level interface for accessing spin locks.

typedef struct { �M

struct { �M

SemSet semset; �M

SharedMemHandle addr[MAX PROCESSES]; �M

} sleeptable; �M
�M

/* Other members are omitted. . . */ �M

} Globals; �M

Figure 3.36: De�nition of the sleep table.

Figure 3.34 shows the assembly functions on which the current implemen-
tation of spin locks are based. The implementation is targeted for the
Intel IA-32 processor family. The acquire function uses the bit-test-and-
set instruction to atomically set the least signi�cant bit of an integer, while
reading the old value of the bit. The instruction is repeated until the
old value of the bit is seen to be 0. The bit-test-and-set instruction is
pre�xed by the lock instruction, which locks the processor-memory bus
for the duration of the instruction. This makes it globally atomic on
multiprocessor architectures. The release function clears all the bits of
the integer, e�ectively releasing the spinlock.

3.9.2 The sleep table

As noted in Section 3.2.1, the sleep table is a part of the globally shared
data. Its de�nition is shown in Figure 3.36. The sleep table contains a set
of MAX_PROCESSES distinct semaphores, one for each process that may exist.
Its purpose is to allow a process to block while waiting for an event. This is
achieved by executing a down operation on the semaphore that corresponds
to the index of the process. To wake a sleeping process, a process executes
an up operation on the same semaphore.
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typedef struct {
Spinlock spinlock;
int owner pid;
int nest count;
ProcessBitmap waiting ;

} Lock;

void Lock Init(Lock* lock);
void Lock Destroy(Lock* lock);
int Lock Acquire(Lock* lock); 10
int Lock TryAcquire(Lock* lock);
int Lock Release(Lock* lock);
int Lock OwnedBy(int pid);

Figure 3.37: Low-level interface for accessing shared locks.

POSH relies on the System V IPC interface for the implementation of the
semaphores.

3.9.3 Shared locks

POSH uses reentrant locks located in shared memory for synchronization
between processes.
The low-level interface for shared locks is listed in Figure 3.37. A shared lock
is represented by the Lock structure de�ned in the �gure. A brief description
of its �elds follows.

spinlock is a spin lock, as described in Section 3.9.1, which must be
acquired to gain access to the remaining �elds.

owner_pid is the process ID of the current owner of the lock.
nest_count is the nest count for the lock, which is maintained to allow for

reentrant locking.
waiting is a process bitmap , as described in Section 3.10.1, which represents

the set of processes that are waiting for access to the lock.

A brief description of the functions de�ned in Figure 3.37 is given here.

Lock_Init initializes the lock structure.
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Lock_Destroy deinitializes the lock structure.
Lock_Acquire acquires the lock, blocking if necessary. The operation �rst

acquires the spin lock, then checks the owner_pid to see if the lock
is already owned by another process. If so, the process sets a bit in
the waiting bitmap, and goes to sleep by blocking on the appropriate
semaphore in the sleep table. If the lock is available, the process assigns
its process ID to the owner_pid �eld and proceeds.

Lock_TryAcquire is a non-blocking version that follows the same procedure
as Lock_Acquire , but returns with an error if if fails to acquire the
lock, rather than blocking.

Lock_Release releases a lock by clearing the owner_pid �eld. It then
examines the waiting bitmap, which indicates which processes are
waiting for the lock. If any processes are waiting, one of them is woken
by performing an up operation on the corresponding semaphore in the
sleep table.

Lock_OwnedBy checks the ownership of a lock to see if it is owned by a
speci�c process.

The current implementation of shared locks has not been given the attention
it deserves from a performance-based point of view, since the primary
requirement was simply to have a working implementation. However, with a
well-de�ned interface, the entire implementation could painlessly be replaced
if performance considerations were to deem it necessary.

3.10 Process Management

The creation and destruction of processes are important events to which
POSH must respond in order to keep the globally shared data structures in
a consistent state. This section describes the globally shared process table,
and how POSH handles the creation and termination of processes.

3.10.1 The process table

As noted in Section 3.2.1, a part of the globally shared data is the process
table . Its purpose is to map the process IDs of all processes to the set of
integers in the range 0�MAX_PROCESSES . Figure 3.38 shows the de�nition of
the process table.
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typedef struct {
struct {

Lock lock;
int pid[MAX PROCESSES];

} proctable;

/* Other members are omitted. . . */
} Globals;

Figure 3.38: De�nition of the process table.

#de�ne PROCESS BITMAP INTS 4
#de�ne INT BITS (sizeof (int)*8)
#de�ne MAX PROCESSES (INT BITS*PROCESS BITMAP INTS)

typedef struct {
int i[PROCESS BITMAP INTS];

} ProcessBitmap;

#de�ne ProcessBitmap SET(bmp, ndx) \
(bmp).i[(ndx)/INT BITS] |= (1 << (ndx)%INT BITS) 10

#de�ne ProcessBitmap IS SET(bmp, ndx) \
((bmp).i[(ndx)/INT BITS] & (1 << (ndx)%INT BITS) != 0)

#de�ne ProcessBitmap CLEAR(bmp, ndx) \
(bmp).i[(ndx)/INT BITS] &= �(1 << (ndx)%INT BITS)

Figure 3.39: De�nition of a process bitmap, and macros to modify it.

Access to the process table is synchronized by a shared lock , described in
Section 3.9, which is stored in the �eld named lock. The table itself is a
simple array of process IDs. A value of −1 indicates an unused entry. On
creation, all processes insert their process ID into an unused entry in the
table. The index at which the process ID is stored is known as the process
index of that process.
Since all processes have indexes in the range 0�MAX_PROCESSES , a set of
processes may be implemented as a bitmap of MAX_PROCESSES bits, where
a set bit indicates that the process with the corresponding process index is
contained in the set. The de�nition of such a bitmap, along with the macros
to operate on it, is shown in Figure 3.39. This compact representation of a set
of processes is used both by the multi-process garbage collection algorithm
described in Section 3.7, and by the implementation of shared locks described
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in Section 3.9.

3.10.2 Process creation

POSH uses a modi�ed version of the standard os.fork function for process
creation.
As explained in Section 3.5.1, pointers can only be stored safely in shared
memory under certain circumstances. Notably, the data to which they point
must be allocated at the same virtual address in all processes accessing
the pointer. In the context of shared objects, which contain a pointer to
their type object, this requires all type objects to be allocated at identical
addresses in all processes. POSH relies on the semantics of the POSIX fork
system call to resolve this problem, since it guarantees an identical memory
lay-out in the parent and child processes. Consequently, applications using
POSH must create peer processes by means of the fork system call.
The os.fork function in Python's standard library implements the fork
system call. However, POSH needs to perform certain updates to internal
data structures when new processes are created. Therefore, POSH provides
its own version of the fork function, which should be used instead of the
one provided by the os module. The version provided by POSH invokes
the built-in function init_child from the new child process. This function
takes care of some important initialization tasks.

• Firstly, an unused entry in the process table described in Section
3.10.1 is selected, where the process ID of the new process is stored.
This provides the process with its process index.
• Secondly, all proxy objects in existence are visited, and the proxybmp
bitmaps of the shared objects to which they refer are updated using the
SharedObject_SetProxyBit function described in Section 3.7. This
step is required by the multi-process garbage collection algorithm, since
the fork call duplicates all the proxy objects from the parent process,
a fact which must be re�ected in the bitmaps of the shared objects.
• Lastly, an exit function is registered, using the Py_AtExit function
provided by the Python/C API, which will be called when the process
terminates. This enables the function to perform the necessary cleanup
tasks for the process.
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3.10.3 Process termination

When a Python process terminates normally, all of the objects in the process
are destructed. The destructors generally release the resources held by their
objects, so any furher cleanup tasks are often unnecessary. However, POSH
needs to update the globally shared process table , described in Section 3.10.1,
whenever a process terminates. This is done in the exit function registered
by the init_child method described in Section 3.10.2. The function clears
the entry in the process table that contains the process ID of the terminating
process, resetting it to −1.
Additionally, a check is made to see if all other processes have terminated, in
which case global cleanup must be performed. The following global cleanup
tasks are performed.

• The destruction of all shared memory regions that remain in the region
table described in Section 3.2.2.
• The destruction of the semaphores in the sleep table , described in
Section 3.9.2.
• Finally, the destruction of the shared memory region in which the
globally shared data is itself allocated. The my_handle �eld of the
Globals structure contains the handle needed for that purpose.

3.10.4 Abnormal process termination

POSH detects the abnormal termination of processes by handling signals,
and attempts to react appropriately.2
On POSIX-compliant platforms, the abnormal termination of a process will
cause a SIGCHLD signal to be sent to its parent process. POSH handles
this signal and attempts to take corrective measures. The process handling
the SIGCHLD signal will perform the regular cleanup tasks on behalf of the
child process. This just involves freeing the entry in the process table that
belonged to the terminating process. However, there are two particularly
di�cult problems that arise when a process terminates abnormally.

• Firstly, the terminating process will incorrectly fail to update the proxy
bitmaps of the shared objects to which it holds references. This may

2Due to time limitations, the algorithms described in this section are not fully
implemented.
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lead to memory leaks in the form of shared objects. To correct this,
all shared objects must be examined, and the appropriate bit in the
proxy bitmap cleared.
• Secondly, a process may be accessing a shared object when it termi-
nates, leaving the object in an inconsistent state. To detect this, all
shared objects must be examined, to see if their lock is owned by the
process that terminated abnormally. If so, the objects are �agged as
possibly corrupted, using the is_corrupt �eld of the SharedObject
structure described in Section 3.4.1. This will trigger an exception on
the subsequent access to the shared object, which may be handled by
the user. This allows the caller to decide how to handle such cases.
It can ignore the exception and try again, with the risk of accessing a
corrupted object, or choose some other suitable reaction, like discarding
the corrupted object.

To address these two problems, a common requirement is to visit all shared
objects in existence. This is why separate heaps are used for the allocation
of instances and auxiliary data structures, as described in Section 3.2.3. If
heap objects are extended to support a traversal of all their allocated memory
chunks, this may in e�ect be used to visit all shared objects in existence. This
is because every allocated memory chunk on the instance heap is known to
contain a shared object. Consequently, there is a feasible way of visiting all
shared objects, so the corrective measures outlined above can be applied.
However, due to time limitations, this has not been implemented.

3.11 The POSH programming interface

This section describes the programming interface that applications using
POSH are presented with. Section 3.11.1 gives a brief description on how
to create and declare a shareable type. Section 3.11.2 explains how to
share objects. Section 3.11.3 describes the functions related to process
management. Figure 3.44 shows a larger example of POSH usage � a multi-
process program that performs a simple matrix multiplication.

3.11.1 Declaration of shareable types

POSH requires all shareable types to be registered prior to any fork calls,
for the reasons described in Section 3.5.1. This is done by calling the
allow_sharing method provided by POSH, passing the shareable type and
optionally a synchronization policy for the shared type. As described in
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import posh

class Person(object):
def init (self, name, age=None):

if age is None:
self.name = name.name
self.age = name.age

else:
self.name = name
self.age = age 10

posh.allow sharing(Person)

Figure 3.40: Example of a shareable user-de�ned type.

Section 3.3.2, user-de�ned shareable types must implement an __init__
method that supports copy semantics. This is the most signi�cant constraint
on user-de�ned types. Figure 3.40 shows an example where a user-de�ned
type is created and declared shareable.
The Person type's __init__ method accepts either one or two arguments.
(Two or three, counting self). Either the name and age of the person is
given, or a reference to another person. The type implements copy semantics,
since it supports instantiation of copies of existing persons. Note that any
object with the �name� and �age� attributes would be acceptible to the
__init__ method.
If posh detects that a shareable type violates any of the restrictions imposed
on them, for instance by overriding an attribute lookup method, the
allow_sharing function will raise an exception.

3.11.2 Sharing of objects

Once a type has successfully been declared shareable, its instances can be
shared using the share method provided by POSH. The method creates
a shared copy of the given object, and returns a proxy object for it. The
returned object always compares equal to the one passed to the method, even
though their types are di�erent. Figure 3.41 shows an interpreter session that
imports POSH and shares an integer object. As the session's output shows,
the fact that one of the objects is shared is completely transparent. Only an
explicit type check can reveals it.
Objects can also be shared implicitly by assigning them to shared container
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>>> import posh
>>> i = 7
>>> j = posh.share(i)
>>> i == j
1

>>> i+j
14

>>> i*j 10
49

>>> type(i)
<type 'int'>

>>> type(j)
<type 'posh._proxy.SharedIntProxy'>

Figure 3.41: Interpreter session involving a shared and non-shared object.

>>> import posh
>>> l = posh.share(range(4))
>>> l
[0, 1, 2, 3]

>>> type(l[0])
<type 'posh._proxy.SharedIntProxy'>

>>> l.append('four')
>>> l 10
[0, 1, 2, 3, 'four']

>>> type(l[4])
<type 'posh._proxy.SharedStrProxy'>

Figure 3.42: Interpreter session involving shared container objects.

objects. Figure 3.42 shows an interpreter session that illustrates this.

3.11.3 Process management

As outlined in Section 3.10.2, POSH de�nes its own version of the os.fork
function, that should be used instead of it. For convenience, several other
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def forkcall(func, *args, **kwargs):
pid = fork()
if not pid:

exit(func(*args, **kwargs))
return pid

Figure 3.43: Implementation of the forkcall method.

process-related functions are imported from the os module into the posh
module as well.
POSH also de�nes two process-related utility functions on its own. One of
them is the waitall function, which waits for all child processes to terminate
by repeatedly calling wait. The other is the forkcall function, which is a
variant of fork that allows a function call to be executed in a child process.
The forkcall method forks a child process, which calls the �rst argument
with the remainder of the arguments. The child process exits when the
call returns, passing the return value as its exit status. The parent process
returns from the forkcall function immediately, with the process ID of the
child process as its return value. Figure 3.43 shows its implementation.

3.12 Portability issues

As a general strategy, POSH attempts to con�ne the portions of the code
that are non-portable to speci�c modules with well-de�ned interfaces, which
makes it feasible to completely replace a module's underlying implementa-
tion, as long as the same interface is supported.
So far, POSH has only been tested on the FreeBSD platform. However, it is
expected that POSH could be run on any POSIX-compliant platform with
little or no modi�cation.

3.13 Summary

POSH attempts to combine the advantages of threads and processes
in Python, by implementing memory based sharing of objects between
processes. For immutable types, this is achieved by placing objects in
shared memory and implementing multi-process garbage collection for shared
objects. The modi�ed garbage collection scheme requires that shared objects
are wrapped in transparent proxy objects. To allow sharing of mutable
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objects, implicit synchronization is applied by the proxy objects. The
standard container types are reimplemented, using memory handles instead
of pointers to hold references to other objects. This enables sharing of
container objects as well.
The end result is that almost any kind of Python object can be shared
using POSH, including instances of user-de�ned types. POSH accomplishes
this in a very transparent way, enabling a programming model that greatly
resembles multi-threaded programming. At the same time, the advantages
of scalability and locality of failure associated with processes are retained.
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import posh, random
WORKERS = 4
N, M = 12, 8
MIN, MAX = 10, 21

def matrix(N, M):
"""Creates a NxM matrix of only zeroes."""
return [[0]*M for row in range(N)]

def random matrix(N, M, min, max): 10
"""Creates a NxM matrix of random elements from range(min, max)."""
m = matrix(N, M)
for row in range(N):

for col in range(M):
m[row][col] = random.randrange(min, max)

return m

def rows(m):
"""Returns the number of rows in a matrix."""
return len(m) 20

def columns(m):
"""Returns the number of columns in a matrix."""
return len(m[0])

def work(A, B, C, W):
"""Worker no. W in the calculation A = B x C.
Calculates every WORKERS row in A, starting at row W."""
for row in range(W, rows(A), WORKERS):

print "Worker %d calculating row %d. . ." % (W, row) 30
for col in range(columns(A)):

# Calculate A[row][col] by doing a dot product of
# B's row C's column
sum = 0
for x in range(columns(B)):

sum += B[row][x] * C[x][col]
A[row][col] = sum

return 0 # Exit status

if name == "__main__": 40
b = random matrix(M, N, MIN, MAX)
c = random matrix(N, M, MIN, MAX)
a = posh.share(matrix(M, M))
for w in range(WORKERS):

posh.forkcall(work, a, b, c, w)
posh.waitall()
for name, value in ("B", b), ("C", c), ("A = B x C", a):

print "Matrix %s:\n%s" % (name, value)

Figure 3.44: A multi-process program that performs a matrix multiplication
using POSH.
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Discussion and conclusion

4.1 Summary of thesis

The global interpreter lock causes multi-threaded Python programs to
scale poorly when running on multiprocessor architectures. A common
workaround to achieve parallelism on such architectures is to use multiple
processes instead of threads. Multi-process applications typically use
ad-hoc shared memory or a messaging API to implement inter-process
communication. POSH addresses the problems with the global interpreter
lock by allowing regular Python objects to be transparently placed in shared
memory. Objects in shared memory are indistinguishable from regular
objects, as seen by Python code.
The implementation creates types whose instances are allocated in shared
memory, by subtyping regular types and overriding their allocation methods.
POSH supports sharing of instances of both user-de�ned and built-in types.
This includes support for attributes of shared objects.
Shared objects are shielded from direct access by wrapping them in custom-
tailored proxy objects that mimic their interface. Proxy objects provide
a single access point from a process to a shared object, allowing implicit
synchronization. Di�erent synchronization policies may be speci�ed for
di�erent types of shared objects. This enables use of more e�cient locking
strategies where applicable. For instance, reader-writer locks may be used
in favour of monitor access semantics.
POSH ensures that a maximum of one proxy object exists per process
for any given shared object. This largely reduces the problem of multi-
process garbage collection to tracking the existence of proxy objects. The

77
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multi-process garbage collection algorithm implemented in POSH maintains
information about the speci�c processes that hold references to a shared
object. In case of abnormal process termination, POSH may detect which
shared objects are a�ected by the termination and correct their reference
counts. Additionally, by examining lock ownerships, POSH is able to
determine whether a process termination has caused a shared object to be
left in an inconsistent state. Python exceptions are used to alert processes of
potentially corrupted objects. This allows a structured approach to handling
of abnormal process terminations. However, this a�ects the transparency of
shared objects.
POSH allows reuse of existing code by making shared objects appear as
regular objects to low-level C code as well as Python code. This is achieved
by prepending the data structures speci�c to shared objects to their object
structures in a transparent way. For instance, a shared integer may be
manipulated by existing C code, which was originally designed to operate
on regular integers. No changes to the Python runtime are required to use
POSH.

4.2 Evaluation

This section examines the requirements listed in the problem de�nition in
Section 1.2, and evaluates how well POSH meets those requirements.

4.2.1 Making shared objects interchangeable with regular
objects

Since shared objects are generally accessed by means of their proxy objects,
this requirement concerns the degree of transparency with which proxy
objects can be interchanged with regular objects.
With some minor exceptions, a proxy object can be used in place of a regular
object in practically every context. Code that performs explicit type checks,
only accepting objects of certain speci�c types, will reject a proxy object,
since it has another type than what it expects. However, as argued in Section
2.2.3, explicit type checks are considered bad programming practice in most
contexts. Code that requires objects supporting a speci�c interface will
generally also accept proxy objects. This is ensured by the dynamic tailoring
of proxy types, described in Section 3.6.2, that creates proxy types with the
exact same interface as the corresponding shareable types.
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Proxy objects also interoperate transparently with regular objects with
regard to evaluation of expressions. For instance, all the operators de�ned
for integer objects will yield the same result in an expression involving two
regular integers, as in an expression involving one regular integer and one
shared integer. The resulting value will be a regular integer in both cases,
and the calculated value will be the same. This is because the shared integer
inherits the implementation provided by the regular int type, so the exact
same code is executed in both cases.
Due to time limitations, not all the operations provided by Python's
standard container objects are implemented by their shared counterparts.
As a consequence, shared container objects are not fully interchangeable
with regular containers, since their interface is only partially supported.
Among the operations that remain unimplemented are iterators for shared
dictionaries, and slice assignment to shared lists. However, the current
implementation clearly demonstrates the feasibility of implementing the full
interfaces, so a future version could ful�ll this requirement for container
objects as well.

4.2.2 Making shared objects accessible to concurrent pro-
cesses

This requirement concerns the handling of concurrent accesses to shared
objects, as well as the mechanisms for making shared objects available to
peer processes.
POSH provides two basic ways of making a shared object available to a peer
process.

• The object can be shared prior to the fork call that creates the peer
process. This will make the object available to the peer process as well,
since it inherits the reference to the object from the parent process.
• The object can be assigned to an already accessible container object,
such as a shared list or dictionary, or to a shared object that supports
attributes. This will also implicitly share the object, so it does not
have to be shared explicitly in advance.

A combination of these techniques will usually be applied. In particular,
a convenient approach is to have the initial process share an object that
supports attributes, such as an instance of a user-de�ned type. This allows
all the subsequently created peer processes to make shared objects available,
by simply assigning them to the initial shared object.
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POSH handles concurrent accesses to shared objects by associating a
synchronization policy with each shared type, as described in Section 3.8.1.
This allows the synchronization policy to be selected according to the
particular requirements of the shared type. Immutable shared objects can
be accessed without synchronization, while monitor access semantics are
enforced by default for the mutable container objects.

4.2.3 Minimizing constraints on shareable types

POSH places very few constraints on shareable types, and supports sharing
of instances of both built-in and user-de�ned types.
The following list sums up the general restrictions imposed by POSH on
shareable types.

• Shareable types may not override the special allocation methods
de�ned by the tp_alloc and tp_free method slots in the type object.
If they do, the e�ect of the allocation methods will be overridden by
POSH. This is an obvious restriction, since the shared type has to
override these methods to allocate the object in shared memory.
• Shareable types may not de�ne custom __getattribute__ ,
__setattr__ or __delattr__ methods. This is because these
methods are overridden by the shared type to implement attributes
for shared objects, as described in Section 3.4.3. The attribute lookup
algorithm of shared objects is identical to the one provided by the
object type, but operates on a shared dictionary associated with the
object, rather than a regular dictionary. Shareable types are allowed
to de�ne a custom __getattr__ method, which is a fall-back method
that gets invoked when the normal attribute lookup algorithm fails.
• Shareable types must implement copy semantics, as described in
Section 3.3.2. This means that their __init__ method should support
copying of existing instances.
• The methods of shareable types may not store references to the self
argument in any way that allows it to persist beyond the lifetime of the
method call. This is because the self argument has to be an instance
of the shared type. Consequently, and unlike other arguments, it is not
wrapped in a proxy object. Storing the self reference would violate
the basic premise that all references to shared objects are contained in
proxy objects, on which the multi-process garbage collection algorithm
described in Section 3.7 relies. It would also allow direct access to
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the shared object, without adhering to the synchronization protocol
described in Section 3.8.1. Methods of shareable types are allowed to
return self, in which case the return value is automatically wrapped
in a proxy object.
• Shareable types may not de�ne a value for the special __slots__
attribute other than an empty list. The __slots__ attribute is a
relatively new feature of Python, that allows it restrict the possible
names of its attributes. Support for this feature could probably be
implemented using special attribute descriptors , as described in Section
2.5.3, but this was not attempted due to time limitations.

All the basic built-in types provided by Python, including container objects,
adhere to these restrictions. Consequently, they are all shareable. A user-
de�ned type might violate some of the restrictions, but in all cases, there
are straightforward workarounds. Designing a shareable user-de�ned type
presents no di�culties if their requirements are kept in mind, and is mostly
a question of avoiding certain rare features such as a non-empty __slots__
attribute. The only signi�cant e�ort required by the programmer is to
implement an __init__ method that supports copy semantics, and that
is usually straightforward as well.
Instances of the InstanceType type, also known as class instances , may not
be shared, since InstanceType de�nes custom attribute lookup methods. As
explained in Section 2.4.5, classes and class instances are essentially obsolete
features in Python, so this restriction is of little signi�cance.
In addition to the restrictions placed on shareable types, one restriction
applies to all objects to be shared, regardless of their types. Since sharing
of objects is implemented by relying on the copy semantics provided by the
shareable type, objects that refer recursively to themselves, forming reference
cycles, cannot be shared. This will cause in�nite recursion when attempting
to copy the object. However, a shared object may create a reference to
itself, forming a reference cycle, as long as it is done after it is shared.
The shared dictionaries and lists implemented by POSH do handle reference
cycles correctly once they have been created.

4.2.4 Minimizing changes to the Python runtime

POSH makes no changes to the Python runtime, and also reuses the
implementation of most existing built-in types by means of inheritance.
POSH is implemented as a regular python package, with the bulk of the
code compiled as a built-in module. As explained in Sections 3.2.3 and
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3.8.1, some major modi�cations may even be made without recompilation
of the low-level C code, as a result of a design that favours extensibility at
some expense of performance.

4.3 Future work

POSH is a fully operational system running under Python 2.2. The
only major portability issue that has been identi�ed is the dependency
on the POSIX fork system call. Additionally, POSH contains low-level
synchronization code that only executes on Intel IA-32 based systems, and
the current implementation relies on the System V interface for management
of shared memory regions. Porting of POSH to other platforms is a subject
for future work.
The handling of abnormal process termination has not been fully imple-
mented, and the use of more elaborate synchronization policies has not been
explored. In addition, the implementations of shared dictionaries and lists
are not complete.
Most importantly, performance evaluations of POSH would be very in-
teresting. Speci�cally, a comparison of multi-process applications using
POSH with equivalent applications that employ alternative IPC mechanisms.
Measurements of the memory usage overhead incurred by POSH would be
valuable as well.
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Appendix A

Source listing

A.1 Address.h

/* Address.h */

#ifndef ADDRESS H INCLUDED
#de�ne ADDRESS H INCLUDED

#include "_core.h"

#de�ne Address Check(op) PyObject TypeCheck(op, &Address Type)

extern PyTypeObject Address Type; 10

void *
Address AsVoidPtr(PyObject *obj);

PyObject *
Address FromVoidPtr(void *ptr);

#endif

84
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A.2 Address.c

/* Address.c */

#include "Address.h"

typedef struct {
PyObject HEAD
void *ptr;

} AddressObject;

static int tp compare(PyObject *self , PyObject *other ) 10
{
AddressObject *self = (AddressObject *) self ;
AddressObject *other = (AddressObject *) other ;

if (self−>ptr < other−>ptr)
return −1;

if (self−>ptr > other−>ptr)
return 1;

return 0;
} 20

static long tp hash(PyObject *self)
{
return Py HashPointer(((AddressObject *) self)−>ptr);

}

static PyObject *
tp str(PyObject *self)
{
char buf [20]; 30
PyOS snprintf (buf, sizeof (buf), "%p", ((AddressObject *) self)−>ptr);
return PyString FromString(buf);

}

static char tp doc[ ] = "Encapsulates a memory address." ;

PyTypeObject Address Type = {
PyObject HEAD INIT(&PyType Type)
0,
"posh._core.Address", 40
sizeof (AddressObject),
0,
0, /* tp dealloc */
0, /* tp print */
0, /* tp getattr */
0, /* tp setattr */
tp compare, /* tp compare */
0, /* tp repr */
0, /* tp as number */
0, /* tp as sequence */ 50
0, /* tp as mapping */
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tp hash, /* tp hash */
0, /* tp call */
tp str, /* tp str */
0, /* tp getattro */
0, /* tp setattro */
0, /* tp as bu�er */
Py TPFLAGS DEFAULT | Py TPFLAGS BASETYPE, /* tp �ags */
tp doc, /* tp doc */
0, /* tp traverse */ 60
0, /* tp clear */
0, /* tp richcompare */
0, /* tp weaklisto�set */
0, /* tp iter */
0, /* tp iternext */
0, /* tp methods */
0, /* tp members */
0, /* tp getset */
0, /* tp base */
0, /* tp dict */ 70
0, /* tp descr get */
0, /* tp descr set */
0, /* tp dicto�set */
0, /* tp init */
0, /* tp alloc */
0, /* tp new */
0, /* tp free */

};

PyObject * 80
Address FromVoidPtr(void *ptr)
{
AddressObject *self = PyObject New(AddressObject, &Address Type);
self−>ptr = ptr;
return (PyObject *) self ;

}

void *
Address AsVoidPtr(PyObject *self)
{ 90
return ((AddressObject *) self)−>ptr;

}
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A.3 Globals.h

/* Globals.h */

/* Global data structures shared between all processes. */

#ifndef GLOBALS H INCLUDED
#de�ne GLOBALS H INCLUDED

#include "_core.h"
#include "Lock.h"
#include "Process.h" 10
#include "SharedRegion.h"
#include "Handle.h"
#include "SemSet.h"

/* Preferred size of the lock table - one lock per process
should be enough to avoid contention */

#de�ne LOCK TABLE SIZE 5 /*MAX PROCESSES*/

/* Maximum number of shared memory regions (this limit may of course
be lower in reality, depending on how SharedRegion New() is implemented */ 20

#de�ne MAX REGIONS 500

typedef struct {
/* The handle for the region this structure is allocated in */
SharedRegionHandle my handle;

/* Table of process ids used to enumerate processes */
struct {

Lock lock;
int pid[MAX PROCESSES]; 30

} proctable;

/* Table of region handles for all shared memory regions
that have been created. */

struct {
Lock lock;
int count; /* The current number of regions. */
int freepos; /* Some position in the table thought to be free, to speed

up searching for a free posititon. */
SharedRegionHandle regh [MAX REGIONS]; 40
size t regsize[MAX REGIONS];

} regtable;

struct {
/* The semaphore set contains one semaphore per process, for letting

the process sleep when needed. There is one handle per process too,
indicating which address the process is waiting for. */

SemSet semset;
SharedMemHandle addr [MAX PROCESSES];

} sleeptable; 50
} Globals;
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/* The globals struct is allocated in a shared memory region by the
�rst process, prior to any forks. This means that all descendants will
have this region attached at the same address, so the structure can
be referenced by a plain pointer. */

extern Globals *globals;

/* Initializes the globals pointer */
int Globals Init(void); 60

/* Cleans up the global variables */
void Globals Cleanup(void);

/* Calls SharedRegion New() to create a new shared memory region of
the given size, and stores the handle in the region table, so that
the region can be destroyed (by Globals Cleanup()) when the last process
exits. Returns a SharedMemHandle for the start of the region. */

SharedMemHandle SharedRegion New(size t *size);
70

/* Calls SharedRegion Destroy() to destroy the given shared memory region,
and also removes it from the region table. */

void SharedRegion Destroy(SharedMemHandle h);

#endif
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A.4 Globals.c

/* Globals.c */

#include "Globals.h"
#include "SharedRegion.h"
#include "Handle.h"

Globals *globals = NULL;

int
Globals Init(void) 10
{
SharedRegionHandle h ;
size t size = sizeof (Globals);
int i;

LOG();
assert(globals == NULL);
/* Allocate the Globals struct in shared memory */
h = SharedRegion New(&size);
if (SharedRegionHandle IS NULL(h)) 20

return −1;
globals = (Globals *) SharedRegion Attach(h);
if (globals == NULL) {

SharedRegion Destroy(h);
return −1;

}
globals−>my handle = h;

/* Initialize the process table. */
Lock Init(&globals−>proctable.lock); 30
for (i = 0; i < MAX PROCESSES; i++)

globals−>proctable.pid[i] = −1;

/* Initialize the region table */
Lock Init(&globals−>regtable.lock);
for (i = 0; i < MAX REGIONS; i++)

globals−>regtable.regh[i] = SharedRegionHandle NULL;
globals−>regtable.count = 0;
globals−>regtable.freepos = 0;

40
/* Initialize the sleep table */
for (i = 0; i < MAX PROCESSES; i++)

globals−>sleeptable.addr[i] = SharedMemHandle NULL;
if (SemSet Init(&globals−>sleeptable.semset, MAX PROCESSES)) {

Globals Cleanup();
return −1;

}

return 0;
} 50
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void
Globals Cleanup(void)
{
int i;

LOG();
Lock Destroy(&globals−>proctable.lock);
Lock Destroy(&globals−>regtable.lock); 60
SemSet Destroy(&globals−>sleeptable.semset);
for (i = 0; i < MAX REGIONS; i++)

if (!SharedRegionHandle IS NULL(globals−>regtable.regh[i]))
SharedRegion Destroy(globals−>regtable.regh[i]);

SharedRegion Destroy(globals−>my handle);
globals = NULL;

}

SharedMemHandle 70
SharedRegion New(size t *size)
{
SharedRegionHandle regh ;
SharedMemHandle result = SharedMemHandle NULL;
int free;

assert(globals != NULL);
Lock Acquire(&globals−>regtable.lock);
if (globals−>regtable.count < MAX REGIONS) {

/* Find a free index in the table */ 80
for (free = globals−>regtable.freepos;

!SharedRegionHandle IS NULL(globals−>regtable.regh[free]);
free = (free+1) % MAX REGIONS)

;
regh = SharedRegion New(size);
if (!SharedRegionHandle IS NULL(regh)) {
globals−>regtable.count++;
globals−>regtable.regh[free] = regh;
globals−>regtable.regsize[free] = *size;
globals−>regtable.freepos = (free+1) % MAX REGIONS; 90
result.regndx = free;
result.o�set = 0;

}
}
Lock Release(&globals−>regtable.lock);

return result;
}

100
void
SharedRegion Destroy(SharedMemHandle h)
{
SharedRegionHandle regh ;
void *reg addr = SharedMemHandle AsVoidPtr(h);
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assert(globals != NULL);
Lock Acquire(&globals−>regtable.lock);
regh = globals−>regtable.regh[h.regndx];
globals−>regtable.regh[h.regndx] = SharedRegionHandle NULL; 110
Lock Release(&globals−>regtable.lock);

SharedRegion Detach(reg addr);
SharedRegion Destroy(regh);

}
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A.5 Handle.h

/* Handle.h */

#ifndef HANDLE H INCLUDED
#de�ne HANDLE H INCLUDED

#include "_core.h"

/* The concept of handles for memory chunks is a way to enable
referring to the same memory location across di�erent
processes. Since shared memory regions may be attached at 10
di�erent addresses in di�erent processes, a pointer does
not have the same meaning for all processes. A handle
does have the same meaning for all processes. */

/* Handle for a location in shared memory. */
typedef struct
{
int regndx; /* This is the region's index in globals->regtable */
unsigned int o�set; /* This is the o�set within the region */

} SharedMemHandle ; 20

/* NULL handle value */
#de�ne SharedMemHandle NULL shared mem handle null

/* NULL handle value for use in initializers */
#de�ne SharedMemHandle INIT NULL { −1, 0 }

/* Macro to test a handle for NULL-ness */
#de�ne SharedMemHandle IS NULL(h) (h.regndx == −1)

30
extern SharedMemHandle shared mem handle null;

/* Macro to compare two handles for equality */
#de�ne SharedMemHandle EQUAL(a, b) \
((a).regndx == (b).regndx && (a).o�set == (b).o�set)

/* Maps a handle for a memory location to a pointer to the location.
This will attach the shared memory region if necessary. */

void *SharedMemHandle AsVoidPtr(SharedMemHandle handle );
40

/* Maps a pointer to a memory location to a handle for the location */
SharedMemHandle SharedMemHandle FromVoidPtr(void *ptr);

#endif
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A.6 Handle.c

/* Handle.c */

#include "Handle.h"
#include "Globals.h"
#include "SharedRegion.h"
#include "SharedObject.h"

/* Table that maps shared memory regions to the addresses at which
they're attached. The index of a shared memory region is the same
here as in globals->regtable. The left and right �elds are used 10
along with the root variable to view the table as a binary search
tree when performing a reverse mapping.
On a fork(), the entire data structure will be duplicated, which is
correct, since the child process will inherit the attachments of its
parent. */

static int root = −1;

typedef struct {
void *start; /* First byte in the region */ 20
void *end; /* Last byte in the region */
int left, right; /* These are indexes in the table */

} AttachedRegion ;

static AttachedRegion at map[MAX REGIONS] = {
{NULL, NULL, 0, 0},
/* The entire table is zero-�lled */

};

/* Recursively builds an optimal search tree of the entries in 30
at map speci�ed by the given indexes. (The indexes must be
sorted according to where the regions are attached.)
Returns the index of the root of the tree. */

static int
optimal tree(int *indexes, int �rst, int last)
{
if (last < �rst)

return −1;
else {

/* The root should be the median of the sorted indexes */ 40
int mid = (last+�rst)/2;
int r = indexes[mid];
/* Apply this rule recursively */
at map[r].left = optimal tree(indexes, �rst, mid−1);
at map[r].right = optimal tree(indexes, mid+1, last);
/* Return the root */
return r;

}
}

50
/* Comparison function used for sorting in build tree(). */
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static int
compare indexes(const void *aa, const void *bb)
{
const int a = *((const int *) aa);
const int b = *((const int *) bb);

if (at map[a].start < at map[b].start)
return −1;

if (at map[a].start > at map[b].start) 60
return 1;

if (at map[a].end < at map[b].end)
return −1;

if (at map[a].end > at map[b].end)
return 1;

return 0;
}

/* Rebuilds the binary search tree in an optimal way. */
static void 70
build tree(void)
{
int regndx[MAX REGIONS];
int i, regcount;

/* Gather the indexes of all attached regions */
for (i = regcount = 0; i < MAX REGIONS; i++)

if (at map[i].start != NULL)
regndx[regcount++] = i;

/* Sort the indexes according to where the regions are attached */ 80
qsort(regndx, regcount, sizeof (int), compare indexes);
/* Build the optimal search tree from the sorted indexes */
root = optimal tree(regndx, 0, regcount−1);

}

/********************/
/* PUBLIC INTERFACE */
/********************/

90
/* NULL value for a shared memory handle */
SharedMemHandle shared mem handle null = SharedMemHandle INIT NULL;

void *
SharedMemHandle AsVoidPtr(SharedMemHandle handle )
{
AttachedRegion *at;

if (SharedMemHandle IS NULL(handle)) {
/* No error here; SharedMemHandle NULL maps to NULL */ 100
return NULL;

}

at = &at map[handle.regndx];
if (at−>start == NULL) {
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/* Attach the region */
assert(globals != NULL);
at−>start = SharedRegion Attach(globals−>regtable.regh[handle.regndx]);
if (at−>start == NULL) {

/* This is an error */ 110
return NULL;

}
at−>end = at−>start + globals−>regtable.regsize[handle.regndx] − 1;
build tree();

}
return at−>start + handle.o�set;

}

SharedMemHandle
SharedMemHandle FromVoidPtr(void *ptr) 120
{
SharedMemHandle result ;
int i;

if (ptr == NULL) {
/* No error here; NULL maps to SharedMemHandle NULL */

return SharedMemHandle NULL;
}

/* Search at map viewed as a binary search tree for an attached region which 130
contains the address. */

i = root;
while (i != −1) {

if (ptr < at map[i].start)
i = at map[i].left;

else if (ptr > at map[i].end)
i = at map[i].right;

else
break;

} 140
if (i == −1) {

/* No matching attached region. This is an error. */
PyErr SetString(PyExc RuntimeError,

"reverse memory handle mapping failed");
return SharedMemHandle NULL;

}

/* We've found an attached region that contains the address.
Construct and return a handle relative to the region. */

result.regndx = i; 150
result.o�set = ptr−at map[i].start;

return result;
}
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A.7 Lock.h

/* Lock.h */

#ifndef LOCK H INCLUDED
#de�ne LOCK H INCLUDED

#include "_core.h"
#include "Process.h"
#include "Spinlock.h"

typedef struct { 10
Spinlock spinlock ;
int owner pid;
int nest count;
ProcessBitmap waiting ;

} Lock;

/* Initializes the lock. Always succeeds. */
void Lock Init(Lock *lock);

/* Destroys the lock. Always succeeds. */ 20
void Lock Destroy(Lock *lock);

/* Acquires the lock, blocking if necessary.
Returns -1 on failure, 0 on success. */

int Lock Acquire(Lock *lock);

/* Tries to acquire the lock without blocking.
Returns -1 on failure, 0 on success. */

int Lock TryAcquire(Lock *lock);
30

/* Releases the lock. Returns -1 on failure, 0 on success. */
int Lock Release(Lock *lock);

/* Returns 1 if the lock is owned by the given process. */
int Lock OwnedBy(int pid);

#endif



APPENDIX A. SOURCE LISTING 97

A.8 Lock.c

/* Lock.c */

#include "Lock.h"
#include "Globals.h"

void
Lock Init(Lock *lock)
{
Spinlock Init(&lock−>spinlock);
lock−>owner pid = −1; 10
lock−>nest count = 0;
ProcessBitmap CLEAR ALL(lock−>waiting);

}

void
Lock Destroy(Lock *lock)
{
Spinlock Destroy(&lock−>spinlock);
lock−>owner pid = −1;
lock−>nest count = 0; 20
assert(ProcessBitmap IS ZERO(lock−>waiting));

}

/* Selects which process to wake up when releasing a lock */
static int
select wakeup(Lock *lock)
{
static int j = −1;

if (ProcessBitmap IS ZERO(lock−>waiting)) 30
return −1;

for(;;) {
/* This loop must terminate, since at least one bit is set */

j = (j+1) % MAX PROCESSES;
if (ProcessBitmap IS SET(lock−>waiting, j))
return j;

}
}

40
int
Lock TryAcquire(Lock *lock)
{
int result = −1;

Spinlock Acquire(&lock−>spinlock);
if (lock−>owner pid == −1 | | lock−>owner pid == my pid) {

/* The lock is free, so grab it. */
lock−>owner pid = my pid;
lock−>nest count++; 50
result = 0;
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}
Spinlock Release(&lock−>spinlock);
return result;

}

int
Lock Acquire(Lock *lock)
{
for (;;) { 60

Spinlock Acquire(&lock−>spinlock);
if (lock−>owner pid == −1 | | lock−>owner pid == my pid) {
/* The lock is free, so grab it. */
lock−>owner pid = my pid;
lock−>nest count++;
Spinlock Release(&lock−>spinlock);
return 0;

}
else {
/* We must wait. Sleep on this process's semaphore in the sleep table, 70

and retry when woken up. */
globals−>sleeptable.addr[my pindex] = SharedMemHandle FromVoidPtr(lock);
ProcessBitmap SET(lock−>waiting, my pindex);
Spinlock Release(&lock−>spinlock);
if (SemSet Down(&globals−>sleeptable.semset, my pindex))

return −1;
}

}
}

80
int
Lock Release(Lock *lock)
{
Spinlock Acquire(&lock−>spinlock);
if (lock−>owner pid != my pid) {

Spinlock Release(&lock−>spinlock);
return −1;

}
if (−−lock−>nest count == 0) {

int wakeup = select wakeup(lock); 90
lock−>owner pid = −1;
if (wakeup != −1) {
globals−>sleeptable.addr[wakeup] = SharedMemHandle NULL;
ProcessBitmap CLEAR(lock−>waiting, wakeup);
Spinlock Release(&lock−>spinlock);
return SemSet Up(&globals−>sleeptable.semset, wakeup);

}
}
Spinlock Release(&lock−>spinlock);
return 0; 100

}
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A.9 LockObject.h

/* LockObject.h */

#ifndef LOCKOBJECT H INCLUDED
#de�ne LOCKOBJECT H INCLUDED

#include "_core.h"

extern PyTypeObject Lock Type;

#endif 10
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A.10 LockObject.c

/* LockObject.c */

#include "LockObject.h"
#include "Lock.h"

typedef struct {
PyObject HEAD
Lock lock;

} LockObject;
10

static int
lock tp init(PyObject *self , PyObject *args, PyObject *kwargs)
{
LockObject *self = (LockObject *) self ;
LockObject *copy = NULL;
static char *kwlist[ ] = {"copy", NULL};

if (!PyArg ParseTupleAndKeywords(args, kwargs, "|O!", kwlist,
&Lock Type, &copy))

return −1; 20
if (copy != NULL) {

/* XXX Verify that the lock is unlocked. */
}
Lock Init(&self−>lock);
return 0;

}

static PyObject *
lock acquire(PyObject *self , PyObject *noargs)
{ 30
LockObject *self = (LockObject *) self ;

if (Lock Acquire(&self−>lock))
return NULL;

Py INCREF(Py None);
return Py None;

}

static PyObject *
lock try acquire(PyObject *self , PyObject *noargs) 40
{
LockObject *self = (LockObject *) self ;
int success;

success = !Lock TryAcquire(&self−>lock);
return PyInt FromLong(success);

}

static PyObject *
lock release(PyObject *self , PyObject *noargs) 50
{
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LockObject *self = (LockObject *) self ;

if (Lock Release(&self−>lock))
return NULL;

Py INCREF(Py None);
return Py None;

}

static char lock acquire doc[ ] = 60
"lock.acquire() -- acquires the lock; blocks if necessary" ;

static char lock try acquire doc[ ] =
"lock.try_acquire() -> bool -- tries to acquire the lock; never blocks" ;

static char lock release doc[ ] =
"lock.release() -- releases the lock" ;

static PyMethodDef lock tp methods[ ] = {
{"acquire", lock acquire, METH NOARGS, lock acquire doc}, 70
{"try_acquire", lock try acquire, METH NOARGS, lock try acquire doc},
{"release", lock release, METH NOARGS, lock release doc},
{NULL, NULL} /* sentinel */

};

static char lock tp doc[ ] = "Lock([copy]) -> A new reentrant lock." ;

PyTypeObject Lock Type = {
PyObject HEAD INIT(&PyType Type)
0, 80
"posh._core.Lock",
sizeof (LockObject),
0,
0, /* tp dealloc */
0, /* tp print */
0, /* tp getattr */
0, /* tp setattr */
0, /* tp compare */
0, /* tp repr */
0, /* tp as number */ 90
0, /* tp as sequence */
0, /* tp as mapping */
0, /* tp hash */
0, /* tp call */
0, /* tp str */
0, /* tp getattro */
0, /* tp setattro */
0, /* tp as bu�er */
Py TPFLAGS DEFAULT | Py TPFLAGS BASETYPE, /* tp �ags */
lock tp doc, /* tp doc */ 100
0, /* tp traverse */
0, /* tp clear */
0, /* tp richcompare */
0, /* tp weaklisto�set */
0, /* tp iter */
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0, /* tp iternext */
lock tp methods, /* tp methods */
0, /* tp members */
0, /* tp getset */
0, /* tp base */ 110
0, /* tp dict */
0, /* tp descr get */
0, /* tp descr set */
0, /* tp dicto�set */
lock tp init, /* tp init */
0, /* tp alloc */
PyType GenericNew, /* tp new */
0, /* tp free */

};
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A.11 Monitor.h

/* Monitor.h */

#ifndef MONITOR H INCLUDED
#de�ne MONITOR H INCLUDED

#include "_core.h"

extern PyTypeObject Monitor Type;

#endif 10
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A.12 Monitor.c

/* Monitor.c */

#include "Monitor.h"
#include "SharedObject.h"
#include "Globals.h"

static PyObject *
enter(PyObject *self, PyObject *args)
{
PyObject *obj, *opname = NULL; 10
SharedObject *shobj;

/* Parse the arguments, which should be the object and the name of
the operation to be performed */

if (!PyArg ParseTuple(args, "O|S", &obj, &opname))
return NULL;

shobj = SharedObject FROM PYOBJECT(obj);

/* Lock the object's lock */
if (Lock Acquire(&shobj−>lock)) 20

return NULL;

Py INCREF(Py None);
return Py None;

}

static PyObject *
leave(PyObject *self, PyObject *args)
{
PyObject *obj, *ignored = NULL; 30
SharedObject *shobj;

/* Parse the arguments, which are the object and the return value
from the enter() call. */

if (!PyArg ParseTuple(args, "O|O", &obj, &ignored))
return NULL;

shobj = SharedObject FROM PYOBJECT(obj);

/* Unlock the appropriate lock */
Lock Release(&shobj−>lock); 40

Py INCREF(Py None);
return Py None;

}

static char enter doc[ ] =
"M.enter(x) -- Acquires the lock associated with x." ;

static char leave doc[ ] =
"M.leave(x) -- Releases the lock associated with x." ; 50



APPENDIX A. SOURCE LISTING 105

static PyMethodDef tp methods[ ] = {
{"enter", enter, METH VARARGS, enter doc},
{"leave", leave, METH VARARGS, leave doc},
{NULL, NULL} /* sentinel */

};

static char tp doc[ ] =
"Synchronization manager that enforces monitor access semantics." ;

60
PyTypeObject Monitor Type = {

PyObject HEAD INIT(&PyType Type)
0,
"posh._core.Monitor",
sizeof (PyObject),
0,
0, /* tp dealloc */
0, /* tp print */
0, /* tp getattr */
0, /* tp setattr */ 70
0, /* tp compare */
0, /* tp repr */
0, /* tp as number */
0, /* tp as sequence */
0, /* tp as mapping */
0, /* tp hash */
0, /* tp call */
0, /* tp str */
0, /* tp getattro */
0, /* tp setattro */ 80
0, /* tp as bu�er */
Py TPFLAGS DEFAULT | Py TPFLAGS BASETYPE, /* tp �ags */
tp doc, /* tp doc */
0, /* tp traverse */
0, /* tp clear */
0, /* tp richcompare */
0, /* tp weaklisto�set */
0, /* tp iter */
0, /* tp iternext */
tp methods, /* tp methods */ 90
0, /* tp members */
0, /* tp getset */
0, /* tp base */
0, /* tp dict */
0, /* tp descr get */
0, /* tp descr set */
0, /* tp dicto�set */
0, /* tp init */
0, /* tp alloc */
PyType GenericNew, /* tp new */ 100
0, /* tp free */

};
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A.13 Process.h

/* Process.h */

#ifndef PROCESS H INCLUDED
#de�ne PROCESS H INCLUDED

#include "_core.h"

/* We allow 4 ints for a process bitmap - this limits
how many processes there can be. */

#de�ne PROCESS BITMAP INTS 4 10
#de�ne INT BITS (sizeof (int)*8)
#de�ne MAX PROCESSES (INT BITS*PROCESS BITMAP INTS)

/* A bitmap of processes, and macros for operations on it */
typedef struct {
int i[PROCESS BITMAP INTS];

} ProcessBitmap;

#de�ne ProcessBitmap SET(bmp, ndx) \
(bmp).i[(ndx)/INT BITS] |= (1 << (ndx)%INT BITS) 20

#de�ne ProcessBitmap IS SET(bmp, ndx) \
(((bmp).i[(ndx)/INT BITS] & (1 << (ndx)%INT BITS)) != 0)

#de�ne ProcessBitmap CLEAR(bmp, ndx) \
(bmp).i[(ndx)/INT BITS] &= �(1 << (ndx)%INT BITS)

/* Update these macros in accordance with PROCESS BITMAP INTS */
#de�ne ProcessBitmap IS ZERO(bmp) \
((bmp).i[0] == 0 && (bmp).i[1] == 0 && (bmp).i[2] == 0 && (bmp).i[3] == 0) 30

#de�ne ProcessBitmap CLEAR ALL(bmp) \
{(bmp).i[0] = 0; (bmp).i[1] = 0; (bmp).i[2] = 0; (bmp).i[3] = 0; }

#de�ne ProcessBitmap IS ALL SET(bmp) \
((bmp).i[0] == (�0) && (bmp).i[1] == (�0) \
&& (bmp).i[2] == (�0) && (bmp).i[3] == (�0))

/* Initializes this process. Should be called on startup and after a fork(). */
int Process Init(void); 40

/* Called by a process when it terminates (normally). */
void Process Cleanup(void);

/* Cleans up after a child process that has terminated abnormally. */
void Process CleanupChild(int pid);

#endif
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A.14 Process.c

/* Process.c */

#include "Process.h"
#include "Globals.h"

int my pid = −1;
int my pindex = −1;

/* Get a process's index in the process table. Allocates 10
a new index for it if necessary. Returns -1 on error. */

static int
get pindex(int pid)
{
int pos, free;

assert(globals != NULL);
Lock Acquire(&globals−>proctable.lock);

for (pos = 0, free = −1; pos < MAX PROCESSES; pos++) 20
if (globals−>proctable.pid[pos] == pid)
break;

else if (globals−>proctable.pid[pos] == −1)
free = pos;

if (pos == MAX PROCESSES) {
pos = free;
if (pos > −1)
globals−>proctable.pid[pos] = pid;

}
30

Lock Release(&globals−>proctable.lock);
return pos;

}

/* Frees a process's index in the process table.
Returns 1 if this is the last process. */

static int
free pindex(int pid)
{ 40
int pos, used;

assert(globals != NULL);
Lock Acquire(&globals−>proctable.lock);

for (pos = 0, used = 0; pos < MAX PROCESSES; pos++)
if (globals−>proctable.pid[pos] == pid)
break;

else if (globals−>proctable.pid[pos] != −1)
used++; 50

if (pos < MAX PROCESSES)
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globals−>proctable.pid[pos] = −1;

Lock Release(&globals−>proctable.lock);
return (used == 0);

}

int
Process Init() 60
{
static int �rst call = 1;

if (�rst call) {
�rst call = 0;
/* This is the �rst process to be initialized. We should initialize

the global data structures. */
if (Globals Init())
return −1;

} 70
my pid = getpid();
my pindex = get pindex(my pid);
if (my pindex == −1)

return −1;
if (Py AtExit(Process Cleanup))

return −1;
LOGF("pid=%d pindex=%d", my pid, my pindex);
return 0;

}
80

void
Process Cleanup()
{
LOGF("pid=%d pindex=%d", my pid, my pindex);
if (free pindex(my pid)) {

/* A return value of 1 means that this is the last process. */
Globals Cleanup();

}
} 90

void
Process CleanupChild(int pid)
{
free pindex(pid);

}
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A.15 Proxy.h

/* Proxy.h */

#ifndef PROXY H INCLUDED
#de�ne PROXY H INCLUDED

#include "_core.h"
#include "SharedObject.h"

/* C representation of a proxy object */
typedef struct { 10
PyObject HEAD
SharedObject *referent;
PyObject *weakre�ist;

} ProxyObject;

extern PyTypeObject Proxy Type;

#de�ne Proxy Check(op) PyObject TypeCheck(op, &Proxy Type)

/* Returns a borrowed reference to a WeakValueDictionary mapping that maps 20
the addresses of shared objects to weak references to their local proxy
objects. The mapping contains all the proxy objects in existence
(in this process). */

PyObject *GetProxyMap(void);

#endif
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A.16 Proxy.c

/* Proxy.c */

#include "Proxy.h"

PyObject *
GetProxyMap(void)
{
static PyObject *proxy map = NULL;

if (proxy map != NULL) 10
return proxy map;

else {
PyObject *module = NULL, *dict = NULL, *type = NULL;

/* Import the module �weakref� and instantiate a WeakValueDictionary */
module = PyImport ImportModule("weakref");
if (module != NULL) {
dict = PyModule GetDict(module);
if (dict != NULL) {

type = PyDict GetItemString(dict, "WeakValueDictionary"); 20
if (type != NULL)
proxy map = PyObject CallFunctionObjArgs(type, NULL);

}
}
Py XDECREF(module);
Py XDECREF(dict);
Py XDECREF(type);
return proxy map;

}
} 30

/*********************************************/
/* Creation and destruction of proxy objects */
/*********************************************/

PyObject *
proxy tp new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
ProxyObject *self ;
PyObject *referent; 40

if (type == &Proxy Type) {
PyErr Format(PyExc TypeError, "cannot create '%.100s' instances" ,

type−>tp name);
return NULL;

}
if (!PyArg ParseTuple(args, "O:Proxy.__new__", &referent))

return NULL;

self = (ProxyObject *) type−>tp alloc(type, 0); 50
if (self != NULL) {
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/* Set the proxy bit of the referent */
self−>referent = SharedObject FROM PYOBJECT(referent);
SharedObject SetProxyBit(self−>referent);
/* tp alloc initialized all �elds to 0 */
assert(self−>weakre�ist == NULL);

}
return (PyObject *) self ;

}
60

static void
proxy tp dealloc(PyObject *self )
{
ProxyObject *self = (ProxyObject *) self ;

/* Notify weak references to the object */
if (self−>weakre�ist != NULL)

PyObject ClearWeakRefs(self );
/* Clear the proxy bit of the referent */
SharedObject ClearProxyBit(self−>referent); 70
/* Free the memory occupied by the object */
self−>ob type−>tp free(self );

}

/*****************************/
/* Methods for proxy objects */
/*****************************/

static int
proxy tp print(PyObject *self , FILE *fp, int �ags) 80
{
ProxyObject *self = (ProxyObject *) self ;

return SharedObject Print(self−>referent, fp, �ags);
}

static int
proxy tp compare(PyObject *self , PyObject *other)
{
ProxyObject *self = (ProxyObject *) self ; 90

return SharedObject Compare(self−>referent, other);
}

static PyObject *
proxy tp repr(PyObject *self )
{
ProxyObject *self = (ProxyObject *) self ;

return SharedObject Repr(self−>referent); 100
}

static long
proxy tp hash(PyObject *self )
{
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ProxyObject *self = (ProxyObject *) self ;

return SharedObject Hash(self−>referent);
}

110
static PyObject *
proxy tp str(PyObject *self )
{
ProxyObject *self = (ProxyObject *) self ;

return SharedObject Str(self−>referent);
}

static PyObject *
proxy tp getattro(PyObject *self , PyObject *name) 120
{
static PyObject *opname = NULL;
ProxyObject *self = (ProxyObject *) self ;
PyObject *ref = SharedObject AS PYOBJECT(self−>referent);
PyObject *state, *result;

/* Do normal attribute lookup on self, and try again on the referent
if it fails. */

result = PyObject GenericGetAttr(self , name);
if (result == NULL) { 130

PyErr Clear();
state = SharedObject EnterString(self−>referent, "__getattr__", &opname);
if (state == NULL)
return NULL;

result = PyObject GetAttr(ref, name);
SharedObject Leave(self−>referent, state);

}
return result;

}
140

static int
proxy tp setattro(PyObject *self , PyObject *name, PyObject *value)
{
static PyObject *opname = NULL;
ProxyObject *self = (ProxyObject *) self ;
PyObject *ref = SharedObject AS PYOBJECT(self−>referent);
PyObject *state;
int result;

state = SharedObject EnterString(self−>referent, "__setattr__", &opname); 150
if (state == NULL)

return −1;
result = PyObject SetAttr(ref, name, value);
SharedObject Leave(self−>referent, state);
return result;

}

/* Macro to extract the referent object from a proxy object. */
#de�ne UNWRAP(op) \
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if (op != NULL && Proxy Check(op)) \ 160
op = SharedObject AS PYOBJECT(((ProxyObject *) op)−>referent)

/* Maps a tuple of objects to a new tuple where proxy
objects are substituted with their referents. */

static PyObject *
map tuple to referents(PyObject *tuple)
{
int i, size = PyTuple GET SIZE(tuple);
PyObject *newtuple, *item;

170
if (size == 0) {

Py INCREF(tuple);
return tuple;

}
newtuple = PyTuple New(size);
if (newtuple == NULL)

return NULL;
for(i = 0; i < size; i++) {

item = PyTuple GET ITEM(tuple, i);
UNWRAP(item); 180
/* This may do a normal INCREF on a shared object,

but this is allowed, and required to counter the
later normal DECREF when the tuple is destroyed. */

Py INCREF(item);
PyTuple SET ITEM(newtuple, i, item);

}
return newtuple;

}

/* Maps a dictionary to a new dictionary where proxy object 190
values (not keys) are substituted with their referents. */

static PyObject *
map dict values to referents(PyObject *dict)
{
PyObject *result, *key, *value;
int pos = 0;

result = PyDict New();
if (result == NULL)

return NULL; 200
while (PyDict Next(dict, &pos, &key, &value)) {

UNWRAP(value);
if (PyDict SetItem(result, key, value)) {
Py DECREF(result);
return NULL;

}
}
return result;

}
210

#undef UNWRAP

static char proxy call method doc[ ] =
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"proxy._call_method(mname, args, kwargs)\n" \
"Calls the named method on the object referred to by the proxy\n" \
"object, using the given positional and keyword arguments.\n" \
"Note that this method takes 3 arguments regardless of how many\n" \
"arguments the named method takes!" ;

static PyObject * 220
proxy call method(PyObject *self , PyObject *args)
{
ProxyObject *self = (ProxyObject *) self ;
PyObject *ref = SharedObject AS PYOBJECT(self−>referent);
/* Borrowed references */
PyObject *mname;
PyObject *state;
PyObject *margs, *mkwargs; /* These are borrowed from the args tuple */
/* New references */
PyObject *result = NULL; 230
PyObject *meth = NULL;

/* Parse the arguments */
if (!PyArg ParseTuple(args, "SO!O!:call_method", &mname,

&PyTuple Type, &margs, &PyDict Type, &mkwargs))
return 0;

/* Enter the shared object */
state = SharedObject Enter(self−>referent, mname);
if (state == NULL) 240

goto Error;

/* Do the actual method call */
meth = PyObject GetAttr(ref, mname);
if (meth != NULL)

result = PyObject Call(meth, margs, mkwargs);

/* Leave the shared object */
SharedObject Leave(self−>referent, state);

250
/* If the method call returned self (the referent), return the proxy

object instead.
XXX: Sharing the result in all cases would be another approach,
but it would prohibit shared objects from returning non-shareable
objects. This is perhaps better anyway? */

if (result == ref) {
Py DECREF(result);
result = self ;
Py INCREF(result);

} 260

Error:
Py XDECREF(meth);
return result;

}

static char proxy doc[ ] = "Abstract base type for proxy types." ;
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static PyMethodDef proxy tp methods[ ] = {
{"_call_method", proxy call method, METH VARARGS, proxy call method doc}, 270
{NULL, NULL} /* sentinel */

};

PyTypeObject Proxy Type = {
PyObject HEAD INIT(&PyType Type)
0,
"posh._core.Proxy",
sizeof (ProxyObject),
0,
proxy tp dealloc, /* tp dealloc */ 280
proxy tp print, /* tp print */
0, /* tp getattr */
0, /* tp setattr */
proxy tp compare, /* tp compare */
proxy tp repr, /* tp repr */
0, /* tp as number */
0, /* tp as sequence */
0, /* tp as mapping */
proxy tp hash, /* tp hash */
0, /* tp call */ 290
proxy tp str, /* tp str */
proxy tp getattro, /* tp getattro */
proxy tp setattro, /* tp setattro */
0, /* tp as bu�er */
Py TPFLAGS DEFAULT | Py TPFLAGS BASETYPE, /* tp �ags */
proxy doc, /* tp doc */
0, /* tp traverse */
0, /* tp clear */
0, /* tp richcompare */
o�setof (ProxyObject, weakre�ist), /* tp weaklisto�set */ 300
0, /* tp iter */
0, /* tp iternext */
proxy tp methods, /* tp methods */
0, /* tp members */
0, /* tp getset */
0, /* tp base */
0, /* tp dict */
0, /* tp descr get */
0, /* tp descr set */
0, /* tp dicto�set */ 310
0, /* tp init */
0, /* tp alloc */
proxy tp new, /* tp new */
0, /* tp free */

};
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A.17 SemSet.h

/* SemSet.h */

#ifndef SEMSET H INCLUDED
#de�ne SEMSET H INCLUDED

#include "_core.h"

#de�ne MAX SYSV SET SIZE 60
#de�ne SYSV SETS PER SEMSET 16

10
#de�ne MAX SEMSET SIZE MAX SYSV SET SIZE * SYSV SETS PER SEMSET

/* A SemSet semaphore set is implemented by up to SYSV SETS PER SEMSET
system V semaphore sets. */

typedef struct {
int size;
int setid[SYSV SETS PER SEMSET];

} SemSet;

/* Initializes a semaphore set with 'size' semaphores initially set to 0. */ 20
int SemSet Init(SemSet *semset, int size);

/* Destroys a semaphore set. */
void SemSet Destroy(SemSet *semset);

/* Does an 'Up' operation on the speci�ed semaphore in the semaphore set. */
int SemSet Up(SemSet *semset, int n);

/* Does a 'Down' operation on the speci�ed semaphore in the semaphore set. */
int SemSet Down(SemSet *semset, int n); 30

#endif
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A.18 SemSet.c

/* SemSet.c */

#include "SemSet.h"
#include <sys/sem.h>

#de�ne SETS NEEDED(size) \
(((size) + SYSV SETS PER SEMSET − 1) / (SYSV SETS PER SEMSET))

#de�ne SET NO(x) ((x) / SYSV SETS PER SEMSET)
#de�ne SEM NO(x) ((x) % SYSV SETS PER SEMSET)

10
int
SemSet Init(SemSet *semset, int size)
{
int sets = SETS NEEDED(size);
int i;

if (sets > SYSV SETS PER SEMSET)
return −1;

for (i = 0; i < sets; i++) {
int id = semget(IPC PRIVATE, MAX SYSV SET SIZE, IPC CREAT | SEM R | SEM A); 20
if (id == −1) {
/* Destroy the sets that have been created so far */
int j;
for (j = 0; j < i; j++)

semctl(semset−>setid[j], 0, IPC RMID);
semset−>size = 0;
PyErr SetString(PyExc RuntimeError,

"semaphore set creation failed");
return −1;

} 30
semset−>setid[i] = id;

}
semset−>size = size;
return 0;

}

void
SemSet Destroy(SemSet *semset)
{
int sets = SETS NEEDED(semset−>size); 40
int i;

for (i = 0; i < sets; i++)
semctl(semset−>setid[i], 0, IPC RMID);

}

int
SemSet Up(SemSet *semset, int n)
{
static struct sembuf op = { 50

0, /* sem num */
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1, /* sem op */
0, /* sem �g */

};
int setno;

if (n < 0 | | n >= semset−>size) {
PyErr SetString(PyExc RuntimeError,

"semaphore set index out of range");
return −1; 60

}
setno = SET NO(n);
op.sem num = SEM NO(n);
if (−1 == semop(semset−>setid[setno], &op, 1)) {

PyErr SetString(PyExc RuntimeError,
"semaphore set UP operation failed");

return −1;
}
return 0;

} 70

int
SemSet Down(SemSet *semset, int n)
{
static struct sembuf op = {

0, /* sem num */
−1, /* sem op */
0, /* sem �g */

};
int setno; 80

if (n < 0 | | n >= semset−>size) {
PyErr SetString(PyExc RuntimeError,

"semaphore set index out of range");
return −1;

}
setno = SET NO(n);
op.sem num = SEM NO(n);
if (−1 == semop(semset−>setid[setno], &op, 1)) {

PyErr SetString(PyExc RuntimeError, 90
"semaphore set DOWN operation failed");

return −1;
}
return 0;

}



APPENDIX A. SOURCE LISTING 119

A.19 Semaphore.h

/* Semaphore.h */

#ifndef SEMAPHORE H INCLUDED
#de�ne SEMAPHORE H INCLUDED

#include "_core.h"

typedef int Semaphore;

/* Semaphore semantics: The usual, but if a process dies, any 10
Semaphore Down() operations by that process that have not been
followed by a Semaphore Up() operation are cancelled,
'releasing' the semaphores. */

int Semaphore Init(Semaphore *semaphore, int value);
void Semaphore Destroy(Semaphore *semaphore);
int Semaphore Up(Semaphore *semaphore);
int Semaphore Down(Semaphore *semaphore);

#endif 20
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A.20 Semaphore.c

/* Semaphore.c */

#include "Semaphore.h"
#include <sys/sem.h>

int
Semaphore Init(Semaphore *semaphore, int value)
{
union semun semarg;

10
semarg.val = value;
*semaphore = semget(IPC PRIVATE, 1, IPC CREAT | SEM R | SEM A);
if (*semaphore == −1)

return −1;
if (semctl(*semaphore, 0, SETVAL, semarg) == −1) {

/* Error - destroy the semaphore again */
semctl(*semaphore, 0, IPC RMID);
return −1;

}
return 0; 20

}

void
Semaphore Destroy(Semaphore *semaphore)
{
if (semctl(*semaphore, 0, IPC RMID) == −1)

/* Error ignored */;
}

int 30
Semaphore Up(Semaphore *semaphore)
{
static struct sembuf op = {

0, /* sem num */
−1, /* sem op */
SEM UNDO, /* sem �g */

};
if (semop(*semaphore, &op, 1) == −1)

return −1;
return 0; 40

}

int
Semaphore Down(Semaphore *semaphore)
{
static struct sembuf op = {

0, /* sem num */
1, /* sem op */
SEM UNDO, /* sem �g */

}; 50
if (semop(*semaphore, &op, 1) == −1)
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return −1;
return 0;

}
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A.21 SharedAlloc.h

/* SharedAlloc.h */

#ifndef SHAREDALLOC H INCLUDED
#de�ne SHAREDALLOC H INCLUDED

#include "_core.h"
#include "SharedObject.h"

/* C interface for allocation of shared memory by objects.
10

SharedAlloc(), SharedFree() and SharedRealloc() are used by shared
objects to allocate their auxilliary data structures.

SharedObject Alloc() and SharedObject Free() are exclusively for use
in the tp alloc and tp free slots of shared objects' types.

*/

/* Allocates shared memory on the data heap of the given object's
meta-type. May allocate more bytes than requested - on return,
*size is the number of bytes actually allocated. On error, this 20
sets an exception and returns NULL. */

void *SharedAlloc(PyObject *self, size t *size);

/* Frees shared memory on the data heap of the given object's meta-type.
If it fails, it fails badly (dumps core). */

void SharedFree(PyObject *self, void *ptr);

/* Rellocates shared memory on the data heap of the given object's
meta-type. May allocate more bytes than requested - on return,
*size is the number of bytes actually allocated. On error, this 30
sets an exception and returns NULL. */

void *SharedRealloc(PyObject *self, void *ptr, size t *size);

/* Allocator function for the tp alloc slot of shared objects' types. */
PyObject *SharedObject Alloc(PyTypeObject *type, int nitems);

/* Deallocator function for the tp free slot of shared objects' types. */
void SharedObject Free(PyObject *obj);

#endif 40
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A.22 SharedAlloc.c

/* SharedAlloc.c */

#include "SharedAlloc.h"
#include "SharedHeap.h"
#include "SharedObject.h"
#include "Address.h"

/* (Re)allocates shared memory using the (re)alloc() method of
one of the heaps of the given type. */

static void * 10
shared alloc(PyTypeObject *type, char *heap name,

void *ptr, size t *size arg)
{
/* New references */
PyObject *tuple = NULL, *heap = NULL;
/* Borrowed references */
PyObject *addr;
/* Return value */
void *rv = NULL;
/* Size as a long */ 20
long size = (long) *size arg;

/* Get the heap object from the meta-type */
heap = PyObject GetAttrString((PyObject *) type, heap name);
if (heap == NULL)

goto Error;

if (ptr == NULL) {
/* Call the alloc() method of the heap */
tuple = PyObject CallMethod(heap, S ALLOC, "l", size); 30

}
else {

/* Call the realloc() method of the heap */
tuple = PyObject CallMethod(heap, S REALLOC, "(Nl)",

Address FromVoidPtr(ptr), size);
}
if (tuple == NULL)

goto Error;
/* The call should return an (address, size) tuple */
if (!PyArg Parse(tuple, 40

"(O!l);(re)alloc() should return an (address, size) tuple" ,
&Address Type, &addr, &size))

goto Error;
/* Extract the allocated address from the object */
rv = Address AsVoidPtr(addr);
if (rv == NULL)

PyErr NoMemory();
/* Return the actual number of bytes allocated */
*size arg = (size t) size;

50
Error:



APPENDIX A. SOURCE LISTING 124

Py XDECREF(heap);
Py XDECREF(tuple);
return rv;

}

static void
shared free(PyTypeObject *type, char *heap name, void *ptr)
{
PyObject *heap; 60

heap = PyObject GetAttrString((PyObject *) type, heap name);
if (heap == NULL) {

/* This sucks, but it really shouldn't happen.
XXX Swallow it with PyErr Clear() ?? */

}
else {

PyObject *result;
result = PyObject CallMethod(heap, S FREE, "N", Address FromVoidPtr(ptr));
/* We have to DECREF the return value, even if we don't care about it. */ 70
Py XDECREF(result);

}
}

void *
SharedAlloc(PyObject *self, size t *size)
{
return shared alloc(self−>ob type, S DHEAP, NULL, size);

}
80

void
SharedFree(PyObject *self, void *ptr)
{
shared free(self−>ob type, S DHEAP, ptr);

}

void *
SharedRealloc(PyObject *self, void *ptr, size t *size)
{
return shared alloc(self−>ob type, S DHEAP, ptr, size); 90

}

PyObject *
SharedObject Alloc(PyTypeObject *type, int nitems)
{
/* The number of bytes required for the new object */
const size t req size = SharedObject VAR SIZE(type, nitems);
/* The number of bytes actually allocated */
size t size = req size; 100
/* The new object */
SharedObject *new obj;

/* Allocate memory for the new object */
new obj = (SharedObject *) shared alloc(type, S IHEAP, NULL, &size);
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if (new obj == NULL)
return NULL;

/* Zero out everything */
memset(new obj, '\0', req size); 110

/* Initialize the object */
SharedObject Init(new obj, type, nitems);

/* Return the new object as a PyObject */
return SharedObject AS PYOBJECT(new obj);

}

void 120
SharedObject Free(PyObject *obj)
{
shared free(obj−>ob type, S IHEAP, SharedObject FROM PYOBJECT(obj));

}
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A.23 SharedDictBase.h

/* SharedDictBase.h */

#ifndef SHAREDDICTBASE H INCLUDED
#de�ne SHAREDDICTBASE H INCLUDED

#include "_core.h"

extern PyTypeObject SharedDictBase Type;

#endif 10
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A.24 SharedDictBase.c

/* SharedDictBase.c */

#include "SharedDictBase.h"
#include "SharedAlloc.h"
#include "SharedHeap.h"
#include "share.h"

/* The implementation of SharedDictBase mirrors that of normal dicts,
found in Objects/dictobject.c. For further explanations of the
algorithms used, look there. */ 10

/* Constant related to collision resolution in lookup(). See dictobject.c */
#de�ne PERTURB SHIFT 5

/* Minimum size of the hash table */
#de�ne MIN SIZE 8

/* Macro to determine whether it is time to resize a dictionary */
#de�ne TIME TO RESIZE(d) ((d)−>�ll*3 >= ((d)−>mask+1)*2)

20
/* SharedDictBase object */
typedef struct {
PyObject HEAD
int �ll; /* # Active + # Deleted */
int used; /* # Active */
int mask; /* # Slots -1 */
SharedMemHandle tableh ; /* Handle to table of entries */

} SharedDictBaseObject ;

/* States for hash table entries */ 30
#de�ne ES FREE 0
#de�ne ES INUSE 1
#de�ne ES DELETED 2
#de�ne ES ERROR 3

/* Hash table entry */
typedef struct {
int state;
long hash;
SharedMemHandle keyh ; 40
SharedMemHandle valueh ;

} Entry;

/* Entry returned on error */
static Entry error entry = {
ES ERROR, /* state */
0, /* hash */
SharedMemHandle INIT NULL, /* keyh */
SharedMemHandle INIT NULL, /* valueh */ 50

};
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/* The basic lookup function used by all operations.

This function must never return NULL; failures are indicated by returning
an Entry * for which the state �eld is ES ERROR.
Exceptions are never reported by this function, and outstanding
exceptions are maintained.

*/ 60
static Entry *
dict lookup(SharedDictBaseObject *d, PyObject *key, long hash)
{
int i, cmp;
unsigned int perturb;
unsigned int mask;
Entry *freeslot, *ep, *table;
SharedMemHandle orig tableh, orig keyh;
PyObject *epkey;
int restore error; 70
PyObject *err type, *err value, *err tb;

table = (Entry *) SharedMemHandle AsVoidPtr(d−>tableh);
if (table == NULL)

return &error entry;

/* Compute the initial table index */
mask = d−>mask;
i = hash & mask;
ep = &table[i]; 80
if (ep−>state == ES FREE)

return ep;

/* Save any pending exception */
restore error = (PyErr Occurred() != NULL);
if (restore error)

PyErr Fetch(&err type, &err value, &err tb);

/* From here on, all exits should be via 'goto Done' */
90

orig tableh = d−>tableh;
freeslot = NULL;
perturb = hash;

while (1) {
if (ep−>state == ES FREE) {
/* When we hit a free entry, it means that the key isn't present.

If we encountered a deleted entry earlier, that is also a correct
position for insertion, and a more optimal one. */

if (freeslot != NULL) 100
ep = freeslot;

goto Done;
}
if (ep−>hash == hash && ep−>state == ES INUSE) {
/* When the hash codes match, the keys are possibly equal. When
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comparing them, we must be aware that the comparison may mutate
the dictionary. */

orig keyh = ep−>keyh;
epkey = SharedObject AS PYOBJECT(SharedMemHandle AsVoidPtr(orig keyh));
cmp = PyObject RichCompareBool(epkey, key, Py EQ); 110
if (cmp < 1)

PyErr Clear(); /* Swallow exceptions during comparison */
else {

if (SharedMemHandle EQUAL(orig tableh, d−>tableh)
&& SharedMemHandle EQUAL(orig keyh, ep−>keyh)) {

/* The dictionary seems to be intact */
if (cmp == 1)

/* And the keys are indeed equal */
goto Done;

} 120
else {
/* The compare did major nasty stu� to the dict: start over. */
ep = dict lookup(d, key, hash);
goto Done;

}
}

}
if (ep−>state == ES DELETED && freeslot == NULL)
/* This is the �rst deleted entry we encounter */
freeslot = ep; 130

/* Collision - compute the next table index and try again */
i = (i << 2) + i + perturb + 1;
perturb >>= PERTURB SHIFT;
ep = &table[i & mask];

}

Done:
/* Restore any previously pending exception */
if (restore error) 140

PyErr Restore(err type, err value, err tb);
return ep;

}

/* Makes the dictionary empty by allocating a new table and clearing it.
Saves a pointer to the old table. Used by dict tp new(),
dict resize() and dict clear(). */

static int
dict empty(SharedDictBaseObject *self, int minused, Entry **oldtable) 150
{
int newsize, actsize, twice newsize;
size t bytes;
Entry *newtable;

/* Find the smallest table size > minused. */
for (newsize = MIN SIZE; newsize <= minused && newsize > 0; newsize <<= 1)

;
if (newsize <= 0) {
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PyErr NoMemory(); 160
return −1;

}

if (oldtable != NULL)
/* Get a pointer to the old table */
*oldtable = (Entry *) SharedMemHandle AsVoidPtr(self−>tableh);

/* Allocate the new table */
bytes = sizeof (Entry) * newsize;
newtable = (Entry *) SharedAlloc((PyObject *) self, &bytes); 170
if (newtable == NULL) {

PyErr NoMemory();
return −1;

}
/* SharedAlloc() may actually have allocated more bytes than requested,

so we take advantage of that if it means we can double the table size */
actsize = (bytes / sizeof (Entry));
twice newsize = newsize << 1;
while (twice newsize > 0 && actsize >= twice newsize) {

newsize = twice newsize; 180
twice newsize <<= 1;

}
/* Zero out the table - this makes state == ES FREE for all entries */
memset(newtable, 0, sizeof (Entry) * newsize);

/* Make the dict empty, using the new table */
self−>tableh = SharedMemHandle FromVoidPtr(newtable);
self−>mask = newsize − 1;
self−>used = 0;
self−>�ll = 0; 190
return 0;

}

/* Resizes the dictionary by reallocating the table and reinserting all
the items again. When entries have been deleted, the new table may
actually be smaller than the old one.

*/
static int
dict resize(SharedDictBaseObject *self, int minused) 200
{
int used = self−>used; /* Make a copy of this before calling dict empty() */
Entry *oldtable, *oldep, *ep;
PyObject *key;

/* Make the dictionary empty, with a new table */
if (dict empty(self, minused, &oldtable))

return −1;

/* Copy the data over from the old table; this is refcount-neutral 210
for active entries. */

assert(oldtable != NULL);
for(oldep = oldtable; used > 0; oldep++) {
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if (oldep−>state == ES INUSE) {
/* Active entry */
used−−;
key = SharedObject AS PYOBJECT(SharedMemHandle AsVoidPtr(oldep−>keyh));

ep = dict lookup(self, key, oldep−>hash);
if (ep−>state == ES FREE) { 220

ep−>keyh = oldep−>keyh;
ep−>valueh = oldep−>valueh;
ep−>hash = oldep−>hash;
ep−>state = ES INUSE;
self−>�ll++;
self−>used++;

}
else

assert(ep−>state == ES ERROR);
} 230

}

/* Free the old table */
SharedFree((PyObject *) self, oldtable);

return 0;
}

/* Generic routine for updating the mapping object a with the items 240
of mapping object b. b's values override those already present in a. */

static int
mapping update(PyObject *a, PyObject *b)
{
PyObject *keys, *iter, *key, *value;
int status;

/* Get b's keys */
keys = PyMapping Keys(b);
if (keys == NULL) 250

return −1;

/* Get an iterator for them */
iter = PyObject GetIter(keys);
Py DECREF(keys);
if (iter == NULL)

return −1;

/* Iterate over the keys in b and insert the items in a */
for (key = PyIter Next(iter); key; key = PyIter Next(iter)) { 260

value = PyObject GetItem(b, key);
if (value == NULL) {
Py DECREF(iter);
Py DECREF(key);
return −1;

}
status = PyObject SetItem(a, key, value);
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Py DECREF(key);
Py DECREF(value);
if (status < 0) { 270
Py DECREF(iter);
return −1;

}
}
Py DECREF(iter);
if (PyErr Occurred())

/* Iterator completed, via error */
return −1;

return 0;
} 280

/* Creates a new, empty shared dictionary */
static PyObject *
dict tp new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
PyObject *self ;

self = type−>tp alloc(type, 0);
if (self != NULL) 290

if (dict empty((SharedDictBaseObject *) self, 1, NULL)) {
self−>ob type−>tp free(self);
return NULL;

}
return self ;

}

/* Initializes a shared dictionary from a dictionary */
static int 300
dict tp init(PyObject *self , PyObject *args, PyObject *kwargs)
{
PyObject *arg = NULL;

if (!PyArg ParseTuple(args, "|O:SharedDictBase.__init__", &arg))
return −1;

if (arg != NULL)
return mapping update(self , arg);

return −1;
} 310

/* DECREFs the items in a table, and frees the table itself. Used by
dict tp dealloc() and dict clear().
CAUTION: This is only safe to use if the items in the table have
no opportunity to mutate the table when they are destroyed. */

static void
delete table(PyObject *self , Entry *table, int used)
{
Entry *ep; 320
SharedObject *obj;
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if (table != NULL) {
for (ep = table; used > 0; ep++) {
if (ep−>state == ES INUSE) {

−−used;
obj = (SharedObject *) SharedMemHandle AsVoidPtr(ep−>keyh);
SharedObject DecRef(obj);
obj = (SharedObject *) SharedMemHandle AsVoidPtr(ep−>valueh);
SharedObject DecRef(obj); 330

}
}
SharedFree(self , table);

}
}

/* Deinitializes a shared dictionary */
static void
dict tp dealloc(PyObject *self ) 340
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;
Entry *table;

table = (Entry *) SharedMemHandle AsVoidPtr(self−>tableh);
delete table(self , table, self−>used);
self −>ob type−>tp free(self );

}

350
/* Clears a shared dictionary */
static PyObject *
dict clear(PyObject *self , PyObject *noargs)
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;
Entry *oldtable;
int used = self−>used;

if (dict empty(self, 1, &oldtable))
return NULL; 360

/* We can now safely delete the items in the old table, because
dict empty() allocated a new table for the dict, and we made
a copy of the number of used slots. This means that the destructors
of the items can only mutate the new, empty dict */

delete table(self , oldtable, used);
Py INCREF(Py None);
return Py None;

}

370
static PyObject *
dict tp repr(PyObject *self )
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;
int i;
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PyObject *s, *temp;
SharedObject *key, *value;
PyObject *colon = NULL, *pieces = NULL, *result = NULL;
Entry *table;

380
i = Py ReprEnter(self );
if (i != 0) {

/* Recursive data structure */
return i > 0 ? PyString FromString("{. . .}") : NULL;

}
if (self−>used == 0) {

/* Empty dictionary */
result = PyString FromString("{}");
goto Done;

} 390

/* Allocate an empty list and a �: � string */
pieces = PyList New(0);
if (pieces == NULL)

goto Done;
colon = PyString FromString(": ");
if (colon == NULL)

goto Done;

table = (Entry *) SharedMemHandle AsVoidPtr(self−>tableh); 400
assert(table != NULL);

/* Do repr() on each key+value pair, and insert �: � between them.
Note that repr may mutate the dict. */

for (i = 0; i <= self−>mask; i++) {
if (table[i].state == ES INUSE) {
int status;

/* Get the key and value objects from the entry's handles */
key = (SharedObject *) SharedMemHandle AsVoidPtr(table[i].keyh); 410
value = (SharedObject *) SharedMemHandle AsVoidPtr(table[i].valueh);
assert(key != NULL && value != NULL);

/* Prevent repr from deleting value during key format. */
SharedObject IncRef(value);
s = SharedObject Repr(key);
PyString Concat(&s, colon);
PyString ConcatAndDel(&s, SharedObject Repr(value));
SharedObject DecRef(value);
if (s == NULL) 420

goto Done;
status = PyList Append(pieces, s);
Py DECREF(s); /* append created a new ref */
if (status < 0)

goto Done;
}

}

/* Add �{}� decorations to the �rst and last items. */
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assert(PyList GET SIZE(pieces) > 0); 430
s = PyString FromString("{");
if (s == NULL)

goto Done;
temp = PyList GET ITEM(pieces, 0);
PyString ConcatAndDel(&s, temp);
PyList SET ITEM(pieces, 0, s);
if (s == NULL)

goto Done;

s = PyString FromString("}"); 440
if (s == NULL)

goto Done;
temp = PyList GET ITEM(pieces, PyList GET SIZE(pieces) − 1);
PyString ConcatAndDel(&temp, s);
PyList SET ITEM(pieces, PyList GET SIZE(pieces) − 1, temp);
if (temp == NULL)

goto Done;

/* Paste them all together with �, � between. */
s = PyString FromString(", "); 450
if (s == NULL)

goto Done;
result = PyString Join(s, pieces);
Py DECREF(s);

Done:
Py XDECREF(pieces);
Py XDECREF(colon);
Py ReprLeave(self );
return result; 460

}

/* Raises an exception on attempt to hash a shared dictionary */
static long
dict tp nohash(PyObject *self)
{
PyErr Format(PyExc TypeError, "%.100s objects are unhashable",

self−>ob type−>tp name);
return −1; 470

}

static int
dict mp length(PyObject *self )
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;

return self−>used;
} 480

static PyObject *
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dict mp subscript(PyObject *self , PyObject *key)
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;
Entry *ep;
long hash;

hash = PyObject Hash(key); 490
if (hash == −1)

return NULL;
ep = dict lookup(self, key, hash);
if (ep−>state == ES INUSE) {

SharedObject *obj = (SharedObject *) SharedMemHandle AsVoidPtr(ep−>valueh);
assert(obj != NULL);
return MakeProxy(obj);

}
PyErr SetObject(PyExc KeyError, key);
return NULL; 500

}

/* Deletes a (key, value) pair from the dictionary. */
static int
dict delitem(SharedDictBaseObject *self, PyObject *lookupkey, long hash)
{
Entry *ep;

ep = dict lookup(self, lookupkey, hash); 510
if (ep−>state == ES INUSE) {

SharedObject *key, *value;

key = (SharedObject *) SharedMemHandle AsVoidPtr(ep−>keyh);
value = (SharedObject *) SharedMemHandle AsVoidPtr(ep−>valueh);
ep−>state = ES DELETED;
self−>used−−;
SharedObject DecRef(key);
SharedObject DecRef(value);
return 0; 520

}
return −1;

}

static int
dict mp ass sub(PyObject *self , PyObject *key, PyObject *value)
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;
SharedObject *shkey, *shvalue; 530
Entry *ep;
long hash;

/* Hash the key (we should be able to do this before sharing it,
since shared objects should have the same hash function as their
non-shared counterparts) */

hash = PyObject Hash(key);
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if (hash == −1)
return −1;

540
if (value == NULL) {

/* Delete an item */
if (!dict delitem(self, key, hash))
return 0;

PyErr SetObject(PyExc KeyError, key);
return −1;

}

/* Share the value object (sharing the key can
wait - that might not be necessary) */ 550

shvalue = ShareObject(value);
if (shvalue == NULL)

return −1;
SharedObject IncRef(shvalue);

assert(self−>�ll <= self−>mask); /* At least one empty slot */

ep = dict lookup(self, key, hash);
if (ep−>state == ES INUSE) {

/* Replace the value of an existing key */ 560
SharedObject *oldvalue;
oldvalue = (SharedObject *) SharedMemHandle AsVoidPtr(ep−>valueh);
ep−>valueh = SharedMemHandle FromVoidPtr(shvalue);
SharedObject DecRef(oldvalue);

}
else {

assert(ep−>state == ES FREE);
/* We are inserting a new key, so we must share it */
shkey = ShareObject(key);
if (shkey == NULL) 570
return −1;

SharedObject IncRef(shkey);

if (ep−>state == ES FREE)
self−>�ll++;

ep−>keyh = SharedMemHandle FromVoidPtr(shkey);
ep−>valueh = SharedMemHandle FromVoidPtr(shvalue);
ep−>hash = hash;
ep−>state = ES INUSE; 580
self−>used++;

/* Possibly resize the dictionary */
if (TIME TO RESIZE(self))
if (dict resize(self, self−>used*2))

return −1;
}
return 0;

}
590
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static int
dict sq contains(PyObject *self , PyObject *key)
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;
long hash;

hash = PyObject Hash(key);
if (hash == −1)

return −1; 600
return (dict lookup(self, key, hash)−>state == ES INUSE);

}

static PyObject *
dict has key(PyObject *self , PyObject *key)
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;
long hash;
long ok; 610

hash = PyObject Hash(key);
if (hash == −1)

return NULL;
ok = (dict lookup(self, key, hash)−>state == ES INUSE);
return PyInt FromLong(ok);

}

static PyObject * 620
dict get(PyObject *self , PyObject *args)
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;
PyObject *key;
PyObject *failobj = Py None;
Entry *ep;
long hash;

if (!PyArg ParseTuple(args, "O|O:get", &key, &failobj))
return NULL; 630

hash = PyObject Hash(key);
if (hash == −1)

return NULL;

ep = dict lookup(self, key, hash);
if (ep−>state == ES INUSE) {

SharedObject *obj = (SharedObject *) SharedMemHandle AsVoidPtr(ep−>valueh);
assert(obj != NULL);
return MakeProxy(obj); 640

}
Py INCREF(failobj);
return failobj;

}
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static PyObject *
dict setdefault(PyObject *self , PyObject *args)
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ; 650
PyObject *key;
PyObject *failobj = Py None;
Entry *ep;
long hash;

if (!PyArg ParseTuple(args, "O|O:setdefault", &key, &failobj))
return NULL;

hash = PyObject Hash(key);
if (hash == −1) 660

return NULL;

ep = dict lookup(self, key, hash);
if (ep−>state == ES INUSE) {

SharedObject *obj = (SharedObject *) SharedMemHandle AsVoidPtr(ep−>valueh);
assert(obj != NULL);
return MakeProxy(obj);

}
if (dict mp ass sub(self , key, failobj))

return NULL; 670
Py INCREF(failobj);
return failobj;

}

static PyObject *
dict keys or values(SharedDictBaseObject *self, int keys)
{
PyObject *list, *proxy;
SharedObject *obj; 680
int i, j, used;
Entry *table;

again:
/* Allocate a list to hold the keys or values */
used = self−>used;
list = PyList New(used);
if (list == NULL)

return NULL;
if (used != self−>used) { 690

/* The allocation caused the dict to resize - start over. */
Py DECREF(list);
goto again;

}

table = SharedMemHandle AsVoidPtr(self−>tableh);
assert(table != NULL);

for (i = 0, j = 0; i <= self−>mask; i++) {
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if (table[i].state == ES INUSE) { 700
/* Get the key/value object from the entry's handle */
if (keys)

obj = (SharedObject *) SharedMemHandle AsVoidPtr(table[i].keyh);
else

obj = (SharedObject *) SharedMemHandle AsVoidPtr(table[i].valueh);
assert(obj != NULL);

/* Encapsulate the key/value in a proxy object */
proxy = MakeProxy(obj);
if (proxy == NULL) { 710

Py DECREF(list);
return NULL;

}

/* Insert the object in the list */
PyList SET ITEM(list, j, proxy);
j++;

}
}
assert(j == used); 720
return list;

}

static PyObject *
dict keys(PyObject *self, PyObject *noargs)
{
return dict keys or values((SharedDictBaseObject *) self, 1);

}
730

static PyObject *
dict values(PyObject *self, PyObject *noargs)
{
return dict keys or values((SharedDictBaseObject *) self, 0);

}

static PyObject *
dict items(PyObject *self , PyObject *noargs) 740
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;
PyObject *list;
int i, j, used;
PyObject *item, *key, *value;
SharedObject *shkey, *shvalue;
Entry *table;

/* Preallocate the list of tuples, to avoid allocations during
* the loop over the items, which could trigger GC, which 750
* could resize the dict. :-(
*/

again:
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used = self−>used;
list = PyList New(used);
if (list == NULL)

return NULL;
for (i = 0; i < used; i++) {

item = PyTuple New(2);
if (item == NULL) { 760
Py DECREF(list);
return NULL;

}
PyList SET ITEM(list, i, item);

}
if (used != self−>used) {

/* The allocations caused the dict to resize - start over. */
Py DECREF(list);
goto again;

} 770

table = (Entry *) SharedMemHandle AsVoidPtr(self−>tableh);
assert(table != NULL);

for (i = 0, j = 0; i <= self−>mask; i++) {
if (table[i].state == ES INUSE) {
/* Get the key and value objects from the entry's handles */
shkey = (SharedObject *) SharedMemHandle AsVoidPtr(table[i].keyh);
shvalue = (SharedObject *) SharedMemHandle AsVoidPtr(table[i].valueh);
assert(key != NULL && value != NULL); 780

/* Encapsulate the key and value in proxy objects */
key = MakeProxy(shkey);
if (key == NULL) {

Py DECREF(list);
return NULL;

}
value = MakeProxy(shvalue);
if (value == NULL) {

Py DECREF(key); 790
Py DECREF(list);
return NULL;

}

/* Insert the (key, value) tuple in the list */
item = PyList GET ITEM(list, j);
PyTuple SET ITEM(item, 0, key);
PyTuple SET ITEM(item, 1, value);
j++;

} 800
}
assert(j == used);
return list;

}

static PyObject *
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dict update(PyObject *self, PyObject *other)
{
if (mapping update(self, other)) 810

return NULL;
Py INCREF(Py None);
return Py None;

}

static PyObject *
dict copy(PyObject *self, PyObject *noarg)
{
PyObject *result = PyDict New(); 820

if (result != NULL) {
/* Here, result is a plain dict, so we use PyDict Update(), and not

the generic mapping update() */
if (PyDict Update(result, self)) {
Py DECREF(result);
result = NULL;

}
}
return result; 830

}

static PyObject *
dict popitem(PyObject *self , PyObject *noargs)
{
SharedDictBaseObject *self = (SharedDictBaseObject *) self ;
PyObject *res, *proxy;
SharedObject *key, *value;
Entry *table, *ep; 840
int i = 0;

/* Allocate the result tuple before checking the size. This is because
of the possible side e�ects (garbage collection) of the allocation. */

res = PyTuple New(2);
if (res == NULL)

return NULL;
if (self−>used == 0) {

PyErr SetString(PyExc KeyError, "popitem(): dictionary is empty");
goto Error; 850

}

table = SharedMemHandle AsVoidPtr(self−>tableh);
assert(table != NULL);

/* We abuse the hash �eld of slot 0 to hold a search �nger, just like
the implementation of normal dictionaries. */

ep = table;
if (ep−>state == ES INUSE)

/* Return slot 0 */ ; 860
else {
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/* Search the remaining slots for a used slot, starting at
the hash value of slot 0, which may or may not have been
stored by a previous popitem(). In any case, it works, so
this is just an optimization to cater to repeated popitem()
calls. */

i = (int) ep−>hash;

if (i > self−>mask | | i < 1)
i = 1; /* skip slot 0 */ 870

while ((ep = &table[i])−>state != ES INUSE) {
if (++i > self−>mask)

i = 1;
}

}

/* Now put the key and value that ep points to in the result tuple,
wrapped in proxy objects. */

key = (SharedObject *) SharedMemHandle AsVoidPtr(ep−>keyh);
value = (SharedObject *) SharedMemHandle AsVoidPtr(ep−>valueh); 880
assert(key != NULL && value != NULL);

proxy = MakeProxy(key);
if (proxy == NULL)

goto Error;
PyTuple SET ITEM(res, 0, proxy);
proxy = MakeProxy(value);
if (proxy == NULL)

goto Error; /* This does DECREF the previous proxy, since it is
already stored in the result tuple */ 890

PyTuple SET ITEM(res, 1, proxy);

/* The result tuple is safely constructed - now clear the slot */
ep−>state = ES DELETED;
self−>used−−;

table[0].hash = i + 1; /* next place to start */

/* Decref the removed key+value */
SharedObject DecRef(key); 900
SharedObject DecRef(value);
return res;

Error:
Py DECREF(res);
return NULL;

}

static PyMappingMethods dict tp as mapping = { 910
dict mp length, /* mp length */
dict mp subscript, /* mp subscript */
dict mp ass sub, /* mp ass subscript */

};
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/* Hack to implement �key in dict� */
static PySequenceMethods dict tp as sequence = {

0, /* sq length */
0, /* sq concat */ 920
0, /* sq repeat */
0, /* sq item */
0, /* sq slice */
0, /* sq ass item */
0, /* sq ass slice */
dict sq contains, /* sq contains */
0, /* sq inplace concat */
0, /* sq inplace repeat */

};
930

static char has key doc[ ] =
"D.has_key(k) -> 1 if D has a key k, else 0" ;

static char get doc[ ] =
"D.get(k[,d]) -> D[k] if D.has_key(k), else d. d defaults to None." ;

static char setdefault doc[ ] =
"D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if not D.has_key(k)" ;

940
static char popitem doc[ ] =
"D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\
2-tuple; but raise KeyError if D is empty" ;

static char keys doc[ ] =
"D.keys() -> list of D's keys";

static char items doc[ ] =
"D.items() -> list of D's (key, value) pairs, as 2-tuples" ;

950
static char values doc[ ] =
"D.values() -> list of D's values" ;

static char update doc[ ] =
"D.update(E) -> None. Update D from E: for k in E.keys(): D[k] = E[k]" ;

static char clear doc[ ] =
"D.clear() -> None. Remove all items from D." ;

static char copy doc[ ] = 960
"D.copy() -> a shallow copy of D";

static char iterkeys doc[ ] =
"D.iterkeys() -> an iterator over the keys of D" ;

static char itervalues doc[ ] =
"D.itervalues() -> an iterator over the values of D" ;

static char iteritems doc[ ] =
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"D.iteritems() -> an iterator over the (key, value) items of D" ; 970

static PyMethodDef dict tp methods[ ] = {
{"has_key", dict has key, METH O, has key doc},
{"get", dict get, METH VARARGS, get doc},
{"setdefault", dict setdefault, METH VARARGS, setdefault doc},
{"popitem", dict popitem, METH NOARGS, popitem doc},
{"keys", dict keys, METH NOARGS, keys doc},
{"items", dict items, METH NOARGS, items doc},
{"values", dict values, METH NOARGS, values doc},
{"update", dict update, METH O, update doc}, 980
{"clear", dict clear, METH NOARGS, clear doc},
{"copy", dict copy, METH NOARGS, copy doc},
/* {�iterkeys�, dict iterkeys, METH NOARGS, iterkeys doc}, */
/* {�itervalues�, dict itervalues, METH NOARGS, itervalues doc}, */
/* {�iteritems�, dict iteritems, METH NOARGS, iteritems doc}, */
{NULL, NULL} /* sentinel */

};

static char dict tp doc[ ] = 990
"Abstract base class for shared dictionaries" ;

PyTypeObject SharedDictBase Type = {
PyObject HEAD INIT(&PyType Type)
0,
"posh._core.SharedDictBase",
sizeof (SharedDictBaseObject ),
0,
dict tp dealloc, /* tp dealloc */
0, /* tp print */ 1000
0, /* tp getattr */
0, /* tp setattr */
0, /* tp compare */
dict tp repr, /* tp repr */
0, /* tp as number */
&dict tp as sequence, /* tp as sequence */
&dict tp as mapping, /* tp as mapping */
dict tp nohash, /* tp hash */
0, /* tp call */
dict tp repr, /* tp str */ 1010
0, /* tp getattro */
0, /* tp setattro */
0, /* tp as bu�er */
Py TPFLAGS DEFAULT | Py TPFLAGS BASETYPE, /* tp �ags */
dict tp doc, /* tp doc */
0, /* tp traverse */
0, /* tp clear */
0, /* tp richcompare */
0, /* tp weaklisto�set */
0, /* tp iter */ 1020
0, /* tp iternext */
dict tp methods, /* tp methods */
0, /* tp members */
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0, /* tp getset */
0, /* tp base */
0, /* tp dict */
0, /* tp descr get */
0, /* tp descr set */
0, /* tp dicto�set */
dict tp init, /* tp init */ 1030
0, /* tp alloc */
dict tp new, /* tp new */
0, /* tp free */

};
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A.25 SharedHeap.h

/* SharedHeap.h */

#ifndef SHAREDHEAP H INCLUDED
#de�ne SHAREDHEAP H INCLUDED

#include "_core.h"
#include "SharedRegion.h"

/* The type object for SharedHeap objects */
extern PyTypeObject SharedHeap Type; 10

/* SharedHeap instances have the following interface:

alloc(size) -> address, size
realloc(address, size) -> address, size
free(address) -> None

The allocation routines alloc() and realloc() may allocate more bytes
than requested. The actual size of the allocated block should be returned.

20
The addresses are passed as Address objects encapsulating a (void *).
Out of memory should be signalled by returning an Address object that
encapsulates NULL. Exceptions raised by the methods will be propagated
in the normal way.

*/

#endif
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A.26 SharedHeap.c

/* SharedHeap.c */

#include "SharedHeap.h"
#include "Address.h"
#include "Globals.h"
#include "Handle.h"
#include "Lock.h"

typedef unsigned int word t;
#de�ne WORD SIZE sizeof (word t) 10

#de�ne MIN ALLOC SIZE (WORD SIZE*16)
#de�ne NOF ALLOC SIZES 10
#de�ne MAX ALLOC SIZE ((MIN ALLOC SIZE << (NOF ALLOC SIZES−1)))

#de�ne PAGE SIZE (MAX ALLOC SIZE * 16)

/* Macro for setting a memory word at base+o�set */
#de�ne SET WORD(base, o�set, value) \
*((word t *) (((void *) base) + (o�set))) = value 20

/* Macro for getting a memory word at base+o�set */
#de�ne GET WORD(base, o�set) \

*((word t *) (((void *) base) + (o�set)))

/* �Root� data structure for a shared heap */
typedef struct
{
/* Handle to the �rst page in each of the NOF ALLOC SIZES page lists */
SharedMemHandle head [NOF ALLOC SIZES]; 30
/* One lock per page list, to protect the integrity of the links in

the list. Note that each page also has a separate lock to protect
its list of allocation units. */

Lock lock[NOF ALLOC SIZES];
} root t;

/* C representation of a SharedHeap object */
typedef struct
{
PyObject HEAD 40
/* Pointer to the (shared) root data structure. We can refer

to this data structure by a pointer, because a fork() will
ensure that the region is attached to the same address in
the child process. */

root t *root;
} SharedHeapObject ;

/* Page data structure */
typedef struct
{ 50
/* Handle for the next page */
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SharedMemHandle next ;
/* Lock to protect the integrity of the linked list of allocation units */
Lock lock;
/* The number of allocation units in this page */
word t nof units;
/* The number of free allocation units in this page */
word t nof free units;
/* Allocation unit size, and mask, which is �(size-1) */
word t unit size; 60
word t unit mask;
/* O�set in bytes, from the start of the page, of the �rst free unit */
word t head;
/* Actual data of the page */
unsigned char data[1];

} page t;

/* Allocates and initializes a new root data structure */
static root t * 70
new root(void)
{
SharedMemHandle rh ;
root t *root;
size t size = sizeof (root t);
int i;

rh = SharedRegion New(&size);
root = (root t *) SharedMemHandle AsVoidPtr(rh);
if (root == NULL) 80
return NULL;

for(i = 0; i < NOF ALLOC SIZES; i++) {
root−>head[i] = SharedMemHandle NULL;
Lock Init(&root−>lock[i]);

}
return root;

}

/* Allocates and initializes a page data structure */
static SharedMemHandle 90
new page(size t size, word t unit size)
{
word t o�set, nexto�set;
SharedMemHandle rh ;
page t *page;

rh = SharedRegion New(&size);
if (SharedMemHandle IS NULL(rh))
return rh;

page = (page t *) SharedMemHandle AsVoidPtr(rh); 100
if (page == NULL)
return SharedMemHandle NULL;

/* Initialize �elds */
page−>next = SharedMemHandle NULL;
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Lock Init(&page−>lock);
page−>unit size = unit size;
page−>unit mask = �(unit size−1);
/* Initialize head, which is the o�set of the �rst free chunk */
page−>head = (o�setof (page t, data)+unit size−1) & page−>unit mask; 110
/* Initalize the unit counts */
page−>nof units = (size − page−>head)/unit size;
page−>nof free units = page−>nof units;

/* Create linked list of free blocks */
o�set = page−>head;
nexto�set = o�set+unit size;
while(nexto�set < size) {
SET WORD(page, o�set, nexto�set);
o�set = nexto�set; 120
nexto�set += unit size;

}
/* Terminate the list with a 0 */
SET WORD(page, o�set, 0);

return rh;
}

/* Allocates an allocation unit from the given page.
Returns NULL on error. */ 130

static void *
alloc unit(page t *page)
{
word t free;

/* Unlink the �rst free unit from the free list */
Lock Acquire(&page−>lock);
free = page−>head;
if (free == 0) {
Lock Release(&page−>lock); 140
return NULL;

}
page−>head = GET WORD(page, free);
page−>nof free units−−;
Lock Release(&page−>lock);

/* Return a pointer to the unit */
return ((void *) page) + free;

}
150

/* Allocates a chunk of memory from the given root structure. */
static void *
alloc chunk(root t *root, long *size arg)
{
unsigned int ndx;
page t *page, *prev page;
long size = *size arg;

/* Calculate ndx such that 2^(ndx) < size <= 2^(ndx+1) */
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for (ndx = 0; size > MIN ALLOC SIZE; ndx++) 160
size >>= 1;

if (ndx >= NOF ALLOC SIZES) {
/* Allocate very big chunks in shared memory regions of their own. */
size t *sz = (size t *) size arg;
return SharedMemHandle AsVoidPtr(SharedRegion New(sz));

}

/* Find a non-empty page on the root->head[ndx] list */
prev page = NULL;
Lock Acquire(&root−>lock[ndx]); 170
page = (page t *) SharedMemHandle AsVoidPtr(root−>head[ndx]);
while (page != NULL && page−>nof free units == 0) {
prev page = page;
page = (page t *) SharedMemHandle AsVoidPtr(page−>next);

}
/* Create and link in a new page if necessary */
if (page == NULL) {
SharedMemHandle pageh = new page(PAGE SIZE, MIN ALLOC SIZE << ndx);
if (SharedMemHandle IS NULL(pageh)) {
Lock Release(&root−>lock[ndx]); 180
return NULL;

}
if (prev page == NULL)
root−>head[ndx] = pageh;

else
prev page−>next = pageh;

page = SharedMemHandle AsVoidPtr(pageh);
}
Lock Release(&root−>lock[ndx]);

190
/* Allocate a unit from the page, and return the actual size

of the allocated chunk, along with the pointer */
*size arg = page−>unit size;
return alloc unit(page);

}

/* Frees a chunk of memory allocated by alloc chunk(). */
static void
free chunk(void *ptr)
{ 200
page t *page;

/* Map the pointer to a handle, so we can �nd the beginning of
the shared memory region, which is also the beginning of the page. */

SharedMemHandle h = SharedMemHandle FromVoidPtr(ptr);
if (SharedMemHandle IS NULL(h)) {
/* XXX: This is an (unexpected) error, which is swallowed. */
return;

}
if (h.o�set == 0) { 210
/* The only chunks allocated at o�set 0 in a shared memory region

are big chunks. Small chunks always have a positive o�set due
to the page header. */
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SharedRegion Destroy(h);
return;

}
page = (page t *) (ptr − h.o�set);

/* Link the chunk into the front of the page's free list */
Lock Acquire(&page−>lock); 220
SET WORD(ptr, 0, page−>head);
page−>head = h.o�set;
page−>nof free units++;
Lock Release(&page−>lock);

}

/* Reallocates a chunk of memory in the given root structure.
On error, this returns NULL, and ptr will still point to a
valid chunk. */

static void * 230
realloc chunk(root t *root, void *ptr, long *size arg)
{
page t *page;
void *newptr;
long cur size;

/* Map the pointer to a handle, so we can �nd the beginning of
the shared memory region, which is also the beginning of the page. */

SharedMemHandle h = SharedMemHandle FromVoidPtr(ptr);
if (SharedMemHandle IS NULL(h)) 240
return NULL;

page = (page t *) (ptr − h.o�set);

/* Get the capacity of the existing allocation unit */
cur size = page−>unit size;

/* Keep the existing unit if it is big enough, and not more
than twice the size needed. */

if (cur size >= *size arg) {
/* The existing unit is big enough */ 250

if (cur size/4 < MIN ALLOC SIZE | | cur size/4 < *size arg) {
/* The existing unit is not too big */
*size arg = cur size;
return ptr;

}
}

/* Allocate a new chunk, copy the contents over, and
free the old chunk */

newptr = alloc chunk(root, size arg); 260
if (newptr == NULL)

return NULL;
if (cur size > *size arg)
cur size = *size arg;

memcpy(newptr, ptr, cur size);
free chunk(ptr);
return newptr;
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}

/**********************/ 270
/* SharedHeap objects */
/**********************/

/* SharedHeap. init () method */
static int
heap init(PyObject *self , PyObject *args, PyObject *kwargs)
{
SharedHeapObject *self = (SharedHeapObject *) self ;
static char *kwlist[ ] = {NULL};

280
if (!PyArg ParseTupleAndKeywords(args, kwargs, "", kwlist))

return −1;
self−>root = new root();
if (self−>root == NULL) {

PyErr SetString(ErrorObject, "couldn't allocate root data structure");
return −1;

}
return 0;

}
290

/* SharedHeap.alloc() method */
static PyObject *
heap alloc(PyObject *self , PyObject *args)
{
SharedHeapObject *self = (SharedHeapObject *) self ;
long size;
void *ptr;

if (!PyArg ParseTuple(args, "l:alloc", &size))
return NULL; 300

ptr = alloc chunk(self−>root, &size);
return Py BuildValue("(Nl)", Address FromVoidPtr(ptr), size);

}

/* SharedHeap.free() method */
static PyObject *
heap free(PyObject *self, PyObject *args)
{
PyObject *addr;
void *ptr; 310

if (!PyArg ParseTuple(args, "O!:free", &Address Type, &addr))
return NULL;

ptr = Address AsVoidPtr(addr);
if (ptr != NULL)

free chunk(ptr);
Py INCREF(Py None);
return Py None;

}
320

/* SharedHeap.realloc() method */
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static PyObject *
heap realloc(PyObject *self , PyObject *args)
{
SharedHeapObject *self = (SharedHeapObject *) self ;
PyObject *addr;
long size;
void *ptr;

if (!PyArg ParseTuple(args, "O!l:realloc", &Address Type, &addr, &size)) 330
return NULL;

ptr = Address AsVoidPtr(addr);
ptr = realloc chunk(self−>root, ptr, &size);
return Py BuildValue("(Nl)", Address FromVoidPtr(ptr), size);

}

static char heap alloc doc[ ] =
"heap.alloc(size) -> address, size -- allocate a block of memory" ;
static char heap free doc[ ] =
"heap.free(address) -- free an allocated block" ; 340
static char heap realloc doc[ ] =
"heap.realloc(address, size) -> address, size -- reallocate a block of memory" ;

static PyMethodDef heap methods[ ] = {
{"alloc", heap alloc, METH VARARGS, heap alloc doc},
{"free", heap free, METH VARARGS, heap free doc},
{"realloc", heap realloc, METH VARARGS, heap realloc doc},
{NULL, NULL} /* sentinel */

};
350

static char heap doc[ ] =
"SharedHeap() -> new shared heap" ;

PyTypeObject SharedHeap Type = {
PyObject HEAD INIT(&PyType Type)
0,
"posh._core.SharedHeap",
sizeof (SharedHeapObject),
0,
0, /* tp dealloc */ 360
0, /* tp print */
0, /* tp getattr */
0, /* tp setattr */
0, /* tp compare */
0, /* tp repr */
0, /* tp as number */
0, /* tp as sequence */
0, /* tp as mapping */
0, /* tp hash */
0, /* tp call */ 370
0, /* tp str */
0, /* tp getattro */
0, /* tp setattro */
0, /* tp as bu�er */
Py TPFLAGS DEFAULT | Py TPFLAGS BASETYPE, /* tp �ags */
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heap doc, /* tp doc */
0, /* tp traverse */
0, /* tp clear */
0, /* tp richcompare */
0, /* tp weaklisto�set */ 380
0, /* tp iter */
0, /* tp iternext */
heap methods, /* tp methods */
0, /* tp members */
0, /* tp getset */
0, /* tp base */
0, /* tp dict */
0, /* tp descr get */
0, /* tp descr set */
0, /* tp dicto�set */ 390
heap init, /* tp init */
0, /* tp alloc */
PyType GenericNew, /* tp new */
0, /* tp free */

};
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A.27 SharedListAndTuple.h

/* SharedListAndTuple.h */

#ifndef SHAREDLISTANDTUPLE H INCLUDED
#de�ne SHAREDLISTANDTUPLE H INCLUDED

#include "_core.h"

extern PyTypeObject SharedListBase Type;
extern PyTypeObject SharedTupleBase Type;

10
#de�ne SharedListBase Check(ob) PyObject TypeCheck(ob, &SharedListBase Type)
#de�ne SharedTupleBase Check(ob) PyObject TypeCheck(ob, &SharedTupleBase Type)

#endif
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A.28 SharedListAndTuple.c

/* SharedListAndTuple.c */

#include "SharedListAndTuple.h"
#include "Handle.h"
#include "SharedObject.h"
#include "SharedAlloc.h"
#include "share.h"

typedef struct
{ 10
PyObject VAR HEAD
int capacity;
SharedMemHandle vectorh ;

} SharedListBaseObject ;

typedef struct
{
PyObject VAR HEAD
SharedMemHandle vector [1];

} SharedTupleBaseObject ; 20

/***********************************************/
/* COMMON ROUTINES FOR SHARED LISTS AND TUPLES */
/***********************************************/

/* Parses an argument list consisting of a single sequence argument */
static int
arg sequence(PyObject *args, char *funcname, PyObject **seq, int *size)
{
static char fmt[110]; 30
PyObject *obj;

PyOS snprintf (fmt, sizeof (fmt), "O:%.100s", funcname);
if (!PyArg ParseTuple(args, fmt, &obj))

return −1;
if (!PySequence Check(obj)) {

PyErr Format((PyObject *) PyExc TypeError,
"%.100s expects a sequence", funcname);

return −1;
} 40
*seq = obj;
*size = PySequence Length(obj);
return 0;

}

static int
common sq length(PyObject *self )
{
PyVarObject *self = (PyVarObject *) self ;
return self−>ob size; 50

}
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/* VECTOR IMPLEMENTATION
A vector in this context (this �le) is an array of handles to
shared objects. Both SharedListBase and SharedTupleBase objects
are implemented using a vector. SharedListBase objects contain
a handle to a vector, while SharedListTuple objects, which are
immutable, have a vector embedded in them.

*/
60

/* Deinitializes a vector of shared objects */
static void
vector deinit(SharedMemHandle *vector, int size)
{
int i;
SharedObject *obj;

for(i = 0; i < size; i++) {
obj = (SharedObject *) SharedMemHandle AsVoidPtr(vector[i]);
SharedObject DecRef(obj); 70

}
}

/* Initializes a vector of shared objects from a sequence */
static int
vector init(SharedMemHandle *vector, PyObject *seq, int size)
{
/* New references */
PyObject *item;
SharedObject *shared item; 80

int i;
size t bytes;

/* Fill in the vector by sharing the items of the sequence */
for(i = 0; i < size; i++) {

item = PySequence GetItem(seq, i);
if (item == NULL)
goto Error;

shared item = ShareObject(item); 90
Py DECREF(item);
if (shared item == NULL)
goto Error;

SharedObject IncRef(shared item);
vector[i] = SharedMemHandle FromVoidPtr(shared item);

}
return 0;

Error:
vector deinit(vector, i−1); 100
return −1;

}

static PyObject *
vector item(SharedMemHandle *vector, int size, int index)
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{
SharedObject *obj;

if (index < 0)
index += size; 110

if (index < 0 | | index >= size) {
PyErr SetString(PyExc IndexError, "index out of range");
return NULL;

}
obj = (SharedObject *) SharedMemHandle AsVoidPtr(vector[index]);
assert(obj != NULL);
return MakeProxy(obj);

}

static int 120
vector ass item(SharedMemHandle *vector, int size, int index, PyObject *value)
{
SharedObject *olditem, *newitem;

if (index < 0)
index += size;

if (index < 0 | | index >= size) {
PyErr SetString((PyObject *) &PyExc IndexError, "index out of range");
return −1;

} 130
newitem = ShareObject(value);
if (newitem == NULL)

return −1;
SharedObject IncRef(newitem);
olditem = (SharedObject*) SharedMemHandle AsVoidPtr(vector[index]);
SharedObject DecRef(olditem);
vector[index] = SharedMemHandle FromVoidPtr(newitem);
return 0;

}
140

/*********************************/
/* SharedListBase IMPLEMENTATION */
/*********************************/

/* Resizes the vector of a list, if necessary, to accomodate
the new size. Accepts a pointer to the list's vector, which
can be NULL if unknown. Returns a pointer to the list's vector,
which may be reallocated.
Returns NULL if resized to 0 or if out of memory.

150
This over-allocates by a factor of 50% to amortize reallocation
costs over time when growing the list. */

static SharedMemHandle *
list resize(SharedListBaseObject *self, int newsize, SharedMemHandle *vector)
{
size t bytes;
int newcapacity;
SharedMemHandle *newvector;
PyObject *self = (PyObject *) self ;
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160
if (vector == NULL)

vector = (SharedMemHandle *) SharedMemHandle AsVoidPtr(self−>vectorh);

/* XXX: Never downsize for now */
if (newsize > 0 && newsize <= self−>capacity) {

self−>ob size = newsize;
return vector;

}

if (newsize <= 0) { 170
/* Free the vector */
if (vector != NULL)
SharedFree(self , vector);

self−>capacity = 0;
self−>ob size = 0;
self−>vectorh = SharedMemHandle NULL;
return NULL;

}

/* XXX: Round up this in some way */ 180
newcapacity = (newsize*3)/2;

/* Allocate more memory for the vector */
bytes = newcapacity * sizeof (SharedMemHandle);
newvector = (SharedMemHandle *) SharedRealloc(self , vector, &bytes);
if (newvector == NULL)

return NULL;

/* SharedRealloc() may actually have allocated more bytes than requested */
self−>capacity = bytes / sizeof (SharedMemHandle); 190
self−>ob size = newsize;
self−>vectorh = SharedMemHandle FromVoidPtr(newvector);
return newvector;

}

/* Creates an empty shared list */
static PyObject *
list tp new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
SharedListBaseObject *self ; 200

if (type == &SharedListBase Type) {
PyErr Format(PyExc TypeError, "cannot create '%.100s' instances" ,

type−>tp name);
return NULL;

}
self = (SharedListBaseObject *) type−>tp alloc(type, 0);
if (self != NULL) {

/* Set the list to be empty (a consistent state) */
assert(self−>ob size == 0); 210
assert(self−>capacity == 0);
self−>vectorh = SharedMemHandle NULL;

}
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return (PyObject *) self ;
}

/* Initializes a shared list from a sequence */
static int
list tp init(PyObject *self , PyObject *args, PyObject *kwds)
{ 220
SharedListBaseObject *self = (SharedListBaseObject *) self ;
PyObject *seq;
int size;
SharedMemHandle *vector;

/* Parse arguments */
if (arg sequence(args, "SharedListBase.__init__", &seq, &size))

return −1;

/* Resize the list */ 230
vector = list resize(self, size, NULL);
if (vector == NULL && size > 0)

return −1;
/* Initialize the list's vector */
if (vector init(vector, seq, size)) {

list resize(self, 0, vector);
return −1;

}
return 0;

} 240

static void
list tp dealloc(PyObject *self )
{
SharedListBaseObject *self = (SharedListBaseObject *) self ;
SharedMemHandle *vector;

vector = (SharedMemHandle *) SharedMemHandle AsVoidPtr(self−>vectorh);
if (vector != NULL) {

vector deinit(vector, self−>ob size); 250
SharedFree(self , vector);

}
self−>ob type−>tp free(self );

}

static long
list tp nohash(PyObject *self)
{
PyErr Format(PyExc TypeError, "%.100s objects are unhashable",

self−>ob type−>tp name); 260
return −1;

}

static PyObject *
list tp repr(PyObject *self )
{
SharedListBaseObject *self = (SharedListBaseObject *) self ;
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SharedMemHandle vectorh = SharedMemHandle NULL;
SharedMemHandle *vector = NULL;
PyObject *s, *temp; 270
PyObject *pieces = NULL, *result = NULL;
int i;

i = Py ReprEnter(self );
if (i != 0) {

/* Recursive data structure */
return i > 0 ? PyString FromString("[. . .]") : NULL;

}

if (self−>ob size == 0) { 280
/* Empty list */
result = PyString FromString("[ ]");
goto Done;

}

pieces = PyList New(0);
if (pieces == NULL)

goto Done;

/* Do repr() on each element. Note that this may mutate the list, 290
so we must refetch the list size on each iteration. */

for (i = 0; i < self−>ob size; i++) {
int status;
SharedObject *item;

/* Check if the vector handle has changed */
if (!SharedMemHandle EQUAL(vectorh, self−>vectorh)) {
vectorh = self−>vectorh;
vector = (SharedMemHandle *) SharedMemHandle AsVoidPtr(vectorh);
assert(vector != NULL); 300

}

/* pieces.append(repr(self[i])) */
item = (SharedObject *) SharedMemHandle AsVoidPtr(vector[i]);
assert(item != NULL);
s = SharedObject Repr(item);
if (s == NULL)
goto Done;

status = PyList Append(pieces, s);
Py DECREF(s); /* append created a new ref */ 310
if (status < 0)
goto Done;

}

/* Add �[ ]� decorations to the �rst and last items. */
assert(PyList GET SIZE(pieces) > 0);
s = PyString FromString("[");
if (s == NULL)

goto Done;
temp = PyList GET ITEM(pieces, 0); 320
PyString ConcatAndDel(&s, temp);
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PyList SET ITEM(pieces, 0, s);
if (s == NULL)

goto Done;

s = PyString FromString("]");
if (s == NULL)

goto Done;
temp = PyList GET ITEM(pieces, PyList GET SIZE(pieces) − 1);
PyString ConcatAndDel(&temp, s); 330
PyList SET ITEM(pieces, PyList GET SIZE(pieces) − 1, temp);
if (temp == NULL)

goto Done;

/* Paste them all together with �, � between. */
s = PyString FromString(", ");
if (s == NULL)

goto Done;
result = PyString Join(s, pieces);
Py DECREF(s); 340

Done:
Py XDECREF(pieces);
Py ReprLeave(self );
return result;

}

static PyObject *
list sq item(PyObject *self , int index)
{ 350
SharedListBaseObject *self = (SharedListBaseObject *) self ;
SharedMemHandle *vector;

vector = (SharedMemHandle *) SharedMemHandle AsVoidPtr(self−>vectorh);
assert(vector != NULL);
return vector item(vector, self−>ob size, index);

}

static int
list sq ass item(PyObject *self , int index, PyObject *value) 360
{
SharedListBaseObject *self = (SharedListBaseObject *) self ;
SharedMemHandle *vector;

vector = (SharedMemHandle *) SharedMemHandle AsVoidPtr(self−>vectorh);
assert(vector != NULL);
return vector ass item(vector, self−>ob size, index, value);

}

static int 370
list sq ass slice(PyObject *self , int ilow, int ihigh, PyObject *v)
{
SharedListBaseObject *self = (SharedListBaseObject *) self ;
return −1;

}
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static PyObject *
list append(PyObject *self , PyObject *value)
{
SharedListBaseObject *self = (SharedListBaseObject *) self ; 380
SharedMemHandle *vector;
int last = self−>ob size;

vector = list resize(self, last+1, NULL);
if (vector == NULL)

return NULL;
if (vector ass item(vector, last+1, last, value)) {

list resize(self, last, vector);
return NULL;

} 390
Py INCREF(Py None);
return Py None;

}

static PyObject *
list pop(PyObject *self , PyObject *args)
{
SharedListBaseObject *self = (SharedListBaseObject *) self ;
int index = −1;

400
if (!PyArg ParseTuple(args, "|i:pop", &index))

return NULL;
return NULL;

}

static PyObject *
list insert(PyObject *self , PyObject *args)
{
SharedListBaseObject *self = (SharedListBaseObject *) self ;
int index; 410
PyObject *item;

if (!PyArg ParseTuple(args, "iO", &index, &item))
return NULL;

return NULL;
}

static PyObject *
list remove(PyObject *self , PyObject *value)
{ 420
SharedListBaseObject *self = (SharedListBaseObject *) self ;
return NULL;

}

static char list append doc[ ] =
"L.append(object) -- append object to end" ;
static char list pop doc[ ] =
"L.pop([index]) -> item -- remove and return item at index (default last)" ;
static char list insert doc[ ] =
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"L.insert(index, object) -- insert object before index" ; 430
static char list remove doc[ ] =
"L.remove(value) -- remove first occurrence of value" ;

static PyMethodDef list tp methods[ ] = {
{"append", list append, METH O, list append doc},
{"pop", list pop, METH VARARGS, list pop doc},
{"insert", list insert, METH VARARGS, list insert doc},
{"remove", list remove, METH O, list remove doc},
{NULL, NULL} /* sentinel */

}; 440

static PySequenceMethods list tp as sequence = {
common sq length, /* sq length */
0, /* sq concat */
0, /* sq repeat */
list sq item, /* sq item */
0, /* sq slice */
list sq ass item, /* sq ass item */
list sq ass slice, /* sq ass slice */
0, /* sq contains */ 450
0, /* sq inplace concat */
0, /* sq inplace repeat */

};

static char list tp doc[ ] =
"Abstract base class for shared lists" ;

PyTypeObject SharedListBase Type = {
PyObject HEAD INIT(&PyType Type)
0, 460
"posh._core.SharedListBase",
sizeof (SharedListBaseObject ),
0,
list tp dealloc, /* tp dealloc */
0, /* tp print */
0, /* tp getattr */
0, /* tp setattr */
0, /* tp compare */
list tp repr, /* tp repr */
0, /* tp as number */ 470
&list tp as sequence, /* tp as sequence */
0, /* tp as mapping */
list tp nohash, /* tp hash */
0, /* tp call */
list tp repr, /* tp str */
0, /* tp getattro */
0, /* tp setattro */
0, /* tp as bu�er */
Py TPFLAGS DEFAULT | Py TPFLAGS BASETYPE, /* tp �ags */
list tp doc, /* tp doc */ 480
0, /* tp traverse */
0, /* tp clear */
0, /* tp richcompare */
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0, /* tp weaklisto�set */
0, /* tp iter */
0, /* tp iternext */
list tp methods, /* tp methods */
0, /* tp members */
0, /* tp getset */
0, /* tp base */ 490
0, /* tp dict */
0, /* tp descr get */
0, /* tp descr set */
0, /* tp dicto�set */
list tp init, /* tp init */
0, /* tp alloc */
list tp new, /* tp new */
0, /* tp free */

};
500

/**********************************/
/* SharedTupleBase IMPLEMENTATION */
/**********************************/

/* Creates a shared tuple */
static PyObject *
tuple tp new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
SharedTupleBaseObject *self ;
PyObject *seq; 510
int size;

if (type == &SharedTupleBase Type) {
PyErr Format(PyExc TypeError, "cannot create '%.100s' instances" ,

type−>tp name);
return NULL;

}
if (arg sequence(args, "SharedTupleBase.__new__", &seq, &size))

return NULL;
520

self = (SharedTupleBaseObject *) type−>tp alloc(type, size);
if (self != NULL) {

if (vector init(self−>vector, seq, size))
return NULL;

}
return (PyObject *) self ;

}

static void 530
tuple tp dealloc(PyObject *self )
{
SharedTupleBaseObject *self = (SharedTupleBaseObject *) self ;

vector deinit(self−>vector, self−>ob size);
self−>ob type−>tp free(self );

}
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static PyObject * 540
tuple sq item(PyObject *self , int index)
{
SharedTupleBaseObject *self = (SharedTupleBaseObject *) self ;

return vector item(self−>vector, self−>ob size, index);
}

/* Hash function for tuples, directly adapted from Objects/tupleobject.c */
static long 550
tuple tp hash(PyObject *self )
{
SharedTupleBaseObject *self = (SharedTupleBaseObject *) self ;
long x, y;
int len = self−>ob size;
SharedMemHandle *p;
SharedObject *item;

x = 0x345678L;
for(p = self−>vector; −−len >= 0; p++) { 560

item = (SharedObject *) SharedMemHandle AsVoidPtr(*p);
assert(item != NULL);
y = SharedObject Hash(item);
if (y == −1)
return −1;

x = (1000003*x) ^ y;
}
x ^= self−>ob size;
if (x == −1)

x = −2; 570
return x;

}

static PyObject *
tuple tp richcompare(PyObject *self , PyObject *other, int op)
{
SharedTupleBaseObject *self = (SharedTupleBaseObject *) self ;
int i, k, sel�en, otherlen;
int other is shared;
SharedObject *a = NULL; 580
PyObject *b = NULL;

/* For 'other', we accept either a plain tuple or a shared tuple */
other is shared = SharedTupleBase Check(other);
if (!other is shared && !PyTuple Check(other)) {

Py INCREF(Py NotImplemented);
return Py NotImplemented ;

}

sel�en = self−>ob size; 590
otherlen = ((PyVarObject *) other)−>ob size;
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/* Search for the �rst index where items are di�erent.
* Note that because tuples are immutable, it's safe to reuse
* sel�en and otherlen across the comparison calls.
*/
for (i = 0; i < sel�en && i < otherlen; i++) {

/* a = self[i] */
a = (SharedObject *) SharedMemHandle AsVoidPtr(self−>vector[i]);
if (a == NULL) 600
return NULL;

/* b = other[i] */
if (other is shared) {
SharedTupleBaseObject *o = (SharedTupleBaseObject *) other;
SharedObject *shb = (SharedObject *)

SharedMemHandle AsVoidPtr(o−>vector[i]);
if (shb == NULL)

return NULL;
b = SharedObject AS PYOBJECT(shb); 610

}
else
b = PyTuple GET ITEM(other, i);

/* Compare a and b */
k = SharedObject RichCompareBool(a, b, Py EQ);
if (k < 0)
return NULL;

if (!k)
break; 620

}

if (i >= sel�en | | i >= otherlen) {
/* No more items to compare � compare sizes */
int cmp;
PyObject *res;
switch (op) {
case Py LT: cmp = sel�en < otherlen; break;
case Py LE: cmp = sel�en <= otherlen; break;
case Py EQ: cmp = sel�en == otherlen; break; 630
case Py NE: cmp = sel�en != otherlen; break;
case Py GT: cmp = sel�en > otherlen; break;
case Py GE: cmp = sel�en >= otherlen; break;
default: return NULL; /* cannot happen */
}
if (cmp)
res = Py True;

else
res = Py False;

Py INCREF(res); 640
return res;

}

/* We have an item that di�ers � shortcuts for EQ/NE */
if (op == Py EQ) {
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Py INCREF(Py False);
return Py False;

}
if (op == Py NE) {

Py INCREF(Py True); 650
return Py True;

}

/* Compare the �nal item again using the proper operator */
return SharedObject RichCompare(a, b, op);

}

static PySequenceMethods tuple tp as sequence = {
common sq length, /* sq length */ 660
0, /* sq concat */
0, /* sq repeat */
tuple sq item, /* sq item */
0, /* sq slice */
0, /* sq ass item */
0, /* sq ass slice */
0, /* sq contains */
0, /* sq inplace concat */
0, /* sq inplace repeat */

}; 670

static char tuple tp doc[ ] =
"Abstract base class for shared tuples" ;

PyTypeObject SharedTupleBase Type = {
PyObject HEAD INIT(&PyType Type)
0,
"posh._core.SharedTupleBase",
sizeof (SharedTupleBaseObject ) − sizeof (SharedMemHandle),
sizeof (SharedMemHandle), 680
tuple tp dealloc, /* tp dealloc */
0, /* tp print */
0, /* tp getattr */
0, /* tp setattr */
0, /* tp compare */
0, /* tp repr */
0, /* tp as number */
&tuple tp as sequence, /* tp as sequence */
0, /* tp as mapping */
tuple tp hash, /* tp hash */ 690
0, /* tp call */
0, /* tp str */
0, /* tp getattro */
0, /* tp setattro */
0, /* tp as bu�er */
Py TPFLAGS DEFAULT | Py TPFLAGS BASETYPE, /* tp �ags */
tuple tp doc, /* tp doc */
0, /* tp traverse */
0, /* tp clear */
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tuple tp richcompare, /* tp richcompare */ 700
0, /* tp weaklisto�set */
0, /* tp iter */
0, /* tp iternext */
0, /* tp methods */
0, /* tp members */
0, /* tp getset */
0, /* tp base */
0, /* tp dict */
0, /* tp descr get */
0, /* tp descr set */ 710
0, /* tp dicto�set */
0, /* tp init */
0, /* tp alloc */
tuple tp new, /* tp new */
0, /* tp free */

};
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A.29 SharedObject.h

/* SharedObject.h */

#ifndef SHAREDOBJECT H INCLUDED
#de�ne SHAREDOBJECT H INCLUDED

#include "_core.h"
#include "Process.h"
#include "Handle.h"
#include "Spinlock.h"
#include "Lock.h" 10

/* This is the C representation of a shared object, which is basically a
normal Python object with additional data prepended to it. When shared
objects are allocated, there is made room for the additional data
that precedes the normal object structure. */

typedef struct {
/* Lock for synchronizing access to the object. Note that the object's

synchronization manager decides if and how to use this lock. */
Lock lock;
/* Handle to the object's shared dictionary */ 20
SharedMemHandle dicth ;
/* Spinlock for protecting the proxybmp and srefcnt �elds. */
Spinlock re�ock;
/* Bitmap showing which processes have a proxy object for the object. */
ProcessBitmap proxybmp ;
/* Shared reference count; this is the number of references to this

object from other *shared* objects. References from proxy objects are
not counted here, but re�ected in the proxy bitmap above. */

unsigned int srefcnt : sizeof (int)*8 − 2;
/* Flags */ 30
unsigned int is corrupt : 1; /* True if the object may be corrupted */
unsigned int no synch : 1; /* True if no synch. is required on this object,

i.e. type(type(self)). synch is None */
/* Start of normal PyObject structure */
PyObject pyobj ;

} attribute ((packed)) SharedObject;

/* �Casting� macros (they do some pointer arithmethics too) */

#de�ne SharedObject FROM PYOBJECT(ob) \ 40
((SharedObject *) (((void *) (ob)) − o�setof (SharedObject, pyobj)))

#de�ne SharedObject AS PYOBJECT(shob) \
(&(((SharedObject *) (shob))−>pyobj))

#de�ne SharedObject AS PYVAROBJECT(shob) \
((PyVarObject *) &(((SharedObject *) (shob))−>pyobj))

/* Macro to calculate the number of bytes needed for a shared object */
#de�ne SharedObject VAR SIZE(type, nitems) \ 50
( PyObject VAR SIZE(type, nitems) + o�setof (SharedObject, pyobj))
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/* Initializes a newly created shared object, including the PyObject part
of it. The object should be zeroed out already. */

void SharedObject Init(SharedObject *obj, PyTypeObject *type, int nitems);

/* Increases the shared reference count of a shared object, indicating
a new reference from another shared object to it. */

void SharedObject IncRef(SharedObject *obj);
60

/* Decreases the shared reference count of a shared object, indicating
that a reference to it from another shared object was destroyed.
If the shared reference count reaches 0, and the process bitmap
indicates that there are no proxy objects for the object, it will
be reclaimed. */

void SharedObject DecRef(SharedObject *obj);

/* Sets the bit in the shared object that indicates that this process has
at least 1 proxy object referring to the shared object. */

void SharedObject SetProxyBit(SharedObject *obj); 70

/* Clears a bit in the shared object, indicating that this process has no
more proxy objects referring to the shared object. If all the bits
in the process bitmap are cleared, and the shared reference count is 0,
the object will be reclaimed. */

void SharedObject ClearProxyBit(SharedObject *obj);

/* Calls the enter() method on the synch attribute of a shared object's
meta-type, acquiring access to the object. */

PyObject *SharedObject Enter(SharedObject *obj, PyObject *opname); 80

/* Like SharedObject Enter(), but opname is a C string, and *opname cache,
if non-NULL, will be used to cache the string object from call to call. */

PyObject *SharedObject EnterString(SharedObject *obj, char *opname,
PyObject **opname cache);

/* Calls the leave() method on the synch attribute of a shared object's
meta-type, releasing access to the object. Ignores any exceptions that
occur. If an exception is set prior to this call, it will be set on return,
too. The 'state' argument should be the return value from 90
SharedObject Enter(). This function always steals a reference to 'state'. */

void SharedObject Leave(SharedObject *obj, PyObject *state);

/* Attribute getter function for shared objects that support attributes.
This is suitable for the tp getattro slot of shareable types. */

PyObject *SharedObject GetAttr(PyObject *obj, PyObject *name);

/* Attribute setter function for shared objects that support attributes.
This is suitable for the tp setattro slot of shareable types. */

int SharedObject SetAttr(PyObject *obj, PyObject *name, PyObject *value); 100

/* The following functions are utility functions that do the same as their
PyObject Whatever counterparts, but also call SharedObject Enter() and
SharedObject Leave() for you. */
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/* Like PyObject Repr() */
PyObject *SharedObject Repr(SharedObject *obj);

/* Like PyObject Str() */
PyObject *SharedObject Str(SharedObject *obj); 110

/* Like PyObject Hash() */
long SharedObject Hash(SharedObject *obj);

/* Like PyObject Print() */
int SharedObject Print(SharedObject *obj, FILE *fp, int �ags);

/* Like PyObject Compare() */
int SharedObject Compare(SharedObject *a, PyObject *b);

120
/* Like PyObject RichCompare() */
PyObject *SharedObject RichCompare(SharedObject *a, PyObject *b, int op);

/* Like PyObject RichCompareBool() */
int SharedObject RichCompareBool(SharedObject *a, PyObject *b, int op);

#endif
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A.30 SharedObject.c

/* SharedObject.c */

#include "SharedObject.h"
#include "Process.h"
#include "Lock.h"
#include "Globals.h"
#include "share.h"

/* 'Neutral' value for normal reference count */
#de�ne NEUTRAL OB REFCNT ((int) (1 << ((sizeof (int)*8−2)))) 10

void
SharedObject Init(SharedObject *obj, PyTypeObject *type, int nitems)
{
PyObject *synch;

/* Normal initialization of the PyObject part */
if (type−>tp �ags & Py TPFLAGS HEAPTYPE)

Py INCREF(type); 20
if (type−>tp itemsize == 0)

(void) PyObject INIT(SharedObject AS PYOBJECT(obj), type);
else

(void) PyObject INIT VAR(SharedObject AS PYVAROBJECT(obj), type, nitems);

/* Initialization speci�c to shared objects */

/* The normal reference count has no meaning for shared objects, so
we set it to a large number to prevent it from interfering with
our own reference counting scheme. This makes it safe to pass shared 30
objects to functions that are refcount-neutral. */

obj−>pyobj.ob refcnt = NEUTRAL OB REFCNT;

/* Shared objects start out with a shared reference count of 0. This
indicates that there are no references to this object from other
shared objects. The process bitmap also starts out blank, since there
are no proxy objects referring to the object. Presumably, the
initialization will be followed by either a SharedObject IncRef() or a
SharedObject SetProxyBit().

*/ 40
assert(obj−>srefcnt == 0);
assert(ProcessBitmap IS ZERO(obj−>proxybmp));

/* Set the �ags of the object according to its metatype */
synch = PyObject GetAttrString((PyObject *) type−>ob type, S SYNCH);
if (synch == NULL) {

PyErr Clear();
obj−>no synch = 1;

}
else { 50

if (synch == Py None)
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obj−>no synch = 1;
Py DECREF(synch);

}

/* Initialize the remaining nonzero �elds */
Lock Init(&obj−>lock);
Spinlock Init(&obj−>re�ock);
obj−>dicth = SharedMemHandle NULL;

} 60

static void
SharedObject Dealloc(SharedObject *obj)
{
PyObject *pyobj = SharedObject AS PYOBJECT(obj);

Spinlock Destroy(&obj−>re�ock);
if (!SharedMemHandle IS NULL(obj−>dicth)) {

SharedObject *dict = (SharedObject *) 70
SharedMemHandle AsVoidPtr(obj−>dicth);

if (dict != NULL) {
printf ("Decreffing shared dictionary at %p.\n" , dict);

SharedObject DecRef(dict);
}

obj−>dicth = SharedMemHandle NULL;
}
pyobj−>ob refcnt = 1;
Py DECREF(pyobj);

} 80

void
SharedObject IncRef(SharedObject *obj)
{
Spinlock Acquire(&obj−>re�ock);
obj−>srefcnt++;
Spinlock Release(&obj−>re�ock);

}
90

void
SharedObject DecRef(SharedObject *obj)
{
int dealloc;

Spinlock Acquire(&obj−>re�ock);
obj−>srefcnt−−;
dealloc = (obj−>srefcnt == 0 && ProcessBitmap IS ZERO(obj−>proxybmp));
Spinlock Release(&obj−>re�ock); 100
if (dealloc)

SharedObject Dealloc(obj);
}
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void
SharedObject SetProxyBit(SharedObject *obj)
{
Spinlock Acquire(&obj−>re�ock);
ProcessBitmap SET(obj−>proxybmp, my pindex); 110
Spinlock Release(&obj−>re�ock);

}

void
SharedObject ClearProxyBit(SharedObject *obj)
{
int dealloc;

Spinlock Acquire(&obj−>re�ock); 120
ProcessBitmap CLEAR(obj−>proxybmp, my pindex);
dealloc = (obj−>srefcnt == 0 && ProcessBitmap IS ZERO(obj−>proxybmp));
Spinlock Release(&obj−>re�ock);
if (dealloc)

SharedObject Dealloc(obj);
}

PyObject *
SharedObject Enter(SharedObject *obj, PyObject *opname) 130
{
/* Disallow calls on the object if it is corrupt */
if (obj−>is corrupt)

goto Corrupt;

if (obj−>no synch) {
Py INCREF(Py None);
return Py None;

}
else { 140

PyObject *pyobj = SharedObject AS PYOBJECT(obj);
PyObject *meta type = (PyObject *) pyobj−>ob type−>ob type;
PyObject *synch, *result;

/* Get the synch attribute of the meta-type */
synch = PyObject GetAttrString(meta type, S SYNCH);
if (synch == NULL)
return NULL;

/* Call its enter() method */ 150
result = PyObject CallMethod(synch, S ENTER, "OO", pyobj, opname);

/* The enter() method may have detected that the object is corrupt */
if (obj−>is corrupt)
goto Corrupt;

return result;
}
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Corrupt: 160
PyErr SetString(ErrorObject, "shared object may be corrupt");
return NULL;

}

PyObject *
SharedObject EnterString(SharedObject *obj, char *opname,

PyObject **opname cache)
{
if (opname cache == NULL) { 170

PyObject *str, *result;

str = PyString FromString(opname);
if (str == NULL)
return NULL;

result = SharedObject Enter(obj, str);
Py DECREF(str);
return result;

}
else { 180

PyObject *str;

if (*opname cache == NULL) {
str = PyString FromString(opname);
if (str == NULL)

return NULL;
*opname cache = str;

}
else
str = *opname cache; 190

return SharedObject Enter(obj, str);
}

}

void
SharedObject Leave(SharedObject *obj, PyObject *state)
{
if (obj−>no synch) {

Py DECREF(state); 200
}
else {

PyObject *pyobj = SharedObject AS PYOBJECT(obj);
PyObject *meta type = (PyObject *) pyobj−>ob type−>ob type;
PyObject *synch, *result;
PyObject *err type, *err value, *err tb;
int restore = 0;

if (PyErr Occurred()) {
PyErr Fetch(&err type, &err value, &err tb); 210
restore = 1;

}
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/* Get the synch attribute of the meta-type */
synch = PyObject GetAttrString(meta type, S SYNCH);
if (synch == NULL)
result = NULL;

else
/* Call its leave() method */
result = PyObject CallMethod(synch, S LEAVE, "OO", pyobj, state); 220

Py DECREF(state);
Py XDECREF(result);
if (result == NULL)
PyErr Clear();

if (restore)
PyErr Restore(err type, err value, err tb);

}
}

230

/* Helper that gets a proxy for the shared dictionary of a shared object. */
static int
get dict(PyObject *obj, PyObject **dictptr)
{
SharedObject *shobj = SharedObject FROM PYOBJECT(obj);
SharedObject *shdict;
PyObject *dict;

if (SharedMemHandle IS NULL(shobj−>dicth)) { 240
*dictptr = NULL;
return 0;

}
shdict = (SharedObject *) SharedMemHandle AsVoidPtr(shobj−>dicth);
if (shdict == NULL)

return −1;
dict = MakeProxy(shdict);
if (dict == NULL)

return −1;
*dictptr = dict; 250
return 0;

}

/* Helper that creates a new empty shared dictionary for a shared object
and returns a proxy for it. */

static PyObject *
set empty dict(PyObject *obj)
{
SharedObject *shobj = SharedObject FROM PYOBJECT(obj); 260
SharedObject *shdict;
PyObject *dict;

assert(SharedMemHandle IS NULL(shobj−>dicth));
dict = PyDict New();
if (dict == NULL)

return NULL;
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shdict = ShareObject(dict);
if (shdict == NULL)

return NULL; 270
dict = MakeProxy(shdict);
if (dict == NULL)

return NULL;
shobj−>dicth = SharedMemHandle FromVoidPtr(shdict);
return dict;

}

/* It may be useful to read PEP 252 for understanding the implementation
of SharedObject GetAttr() and SharedObject SetAttr(). They mirror the
implementation of PyObject GenericGetAttr() and PyObject GenericSetAttr() 280
found in Objects/object.c */

PyObject *
SharedObject GetAttr(PyObject *obj, PyObject *name)
{
PyTypeObject *tp = obj−>ob type;
PyObject *descr;
PyObject *res = NULL;
descrgetfunc f ;
PyObject *dict; 290

#ifdef Py USING UNICODE
/* The Unicode to string conversion is done here because the

existing tp setattro slots expect a string object as name
and we wouldn't want to break those. */

if (PyUnicode Check(name)) {
name = PyUnicode AsEncodedString(name, NULL, NULL);
if (name == NULL)
return NULL;

} 300
else

#endif
if (!PyString Check(name)){
PyErr SetString(PyExc TypeError,

"attribute name must be string");
return NULL;

}
else
Py INCREF(name);

310
/* Ready the object's type if needed */
if (tp−>tp dict == NULL) {

if (PyType Ready(tp) < 0)
goto done;

}

/* Look for a descriptor in the type */
descr = PyType Lookup(tp, name);
f = NULL;
if (descr != NULL) { 320

f = descr−>ob type−>tp descr get;
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if (f != NULL && PyDescr IsData(descr)) {
/* Data descriptors in the type override values

in the object's dictionary */
res = f(descr, obj, (PyObject *)obj−>ob type);
goto done;

}
}

/* Does the object have a dictionary? */ 330
if (obj−>ob type−>tp dicto�set) {

/* Get the object's dictionary */
if (get dict(obj, &dict))
goto done;

if (dict != NULL) {
/* Get the value from the object's dictionary */
res = PyObject GetItem(dict, name);
if (res != NULL)

goto done;
} 340

}

/* No object dictionary, or missing key -
use the non-data descriptor, if any */

if (f != NULL) {
res = f(descr, obj, (PyObject *)obj−>ob type);
goto done;

}

/* Return the descriptor itself as a last resort */ 350
if (descr != NULL) {

Py INCREF(descr);
res = descr;
goto done;

}

/* Everything failed - set an AttributeError exception */
PyErr Format(PyExc AttributeError,

"'%.50s' object has no attribute '%.400s'" ,
tp−>tp name, PyString AS STRING(name)); 360

done:
Py DECREF(name);
return res;

}

int
SharedObject SetAttr(PyObject *obj, PyObject *name, PyObject *value)
{
PyTypeObject *tp = obj−>ob type; 370
PyObject *descr;
descrsetfunc f ;
PyObject *dict;
int res = −1;
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#ifdef Py USING UNICODE
/* The Unicode to string conversion is done here because the

existing tp setattro slots expect a string object as name
and we wouldn't want to break those. */

if (PyUnicode Check(name)) { 380
name = PyUnicode AsEncodedString(name, NULL, NULL);
if (name == NULL)
return −1;

}
else

#endif
if (!PyString Check(name)){
PyErr SetString(PyExc TypeError,

"attribute name must be string");
return −1; 390

}
else
Py INCREF(name);

/* Ready the object's type if needed */
if (tp−>tp dict == NULL) {

if (PyType Ready(tp) < 0)
goto done;

}
400

/* Look for a descriptor in the type */
descr = PyType Lookup(tp, name);
f = NULL;
if (descr != NULL) {

f = descr−>ob type−>tp descr set;
if (f != NULL && PyDescr IsData(descr)) {
/* Data descriptors in the type override values

in the object's dictionary */
res = f(descr, obj, value);
goto done; 410

}
}

/* Does the object have a dictionary? */
if (obj−>ob type−>tp dicto�set) {

/* Get the object's dictionary */
if (get dict(obj, &dict))
goto done;

/* Create a new one if needed */
if (dict == NULL && value != NULL) { 420
dict = set empty dict(obj);
if (dict == NULL)

goto done;
}
if (dict != NULL) {
/* Assign/delete the value from the dictionary */
if (value == NULL)

res = PyMapping DelItem(dict, name);
else
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res = PyObject SetItem(dict, name, value); 430
if (res < 0 && PyErr ExceptionMatches(PyExc KeyError))

PyErr SetObject(PyExc AttributeError, name);
goto done;

}
}

/* No object dictionary - use the non-data descriptor, if any */
if (f != NULL) {

res = f(descr, obj, value);
goto done; 440

}

/* Everything failed - set an AttributeError exception */
if (descr == NULL) {

PyErr Format(PyExc AttributeError,
"'%.50s' object has no attribute '%.400s'" ,
tp−>tp name, PyString AS STRING(name));

goto done;
}

450
PyErr Format(PyExc AttributeError,

"'%.50s' object attribute '%.400s' is read-only" ,
tp−>tp name, PyString AS STRING(name));

done:
Py DECREF(name);
return res;

}

PyObject * 460
SharedObject Repr(SharedObject *obj)
{
static PyObject *opname = NULL;
PyObject *state, *result;

state = SharedObject EnterString(obj, "__repr__", &opname);
result = PyObject Repr(SharedObject AS PYOBJECT(obj));
SharedObject Leave(obj, state);
return result;

} 470

PyObject *
SharedObject Str(SharedObject *obj)
{
static PyObject *opname = NULL;
PyObject *state, *result;

state = SharedObject EnterString(obj, "__str__", &opname);
result = PyObject Str(SharedObject AS PYOBJECT(obj)); 480
SharedObject Leave(obj, state);
return result;

}
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long
SharedObject Hash(SharedObject *obj)
{
static PyObject *opname = NULL;
PyObject *state; 490
long result;

state = SharedObject EnterString(obj, "__hash__", &opname);
if (state == NULL)

return −1;
result = PyObject Hash(SharedObject AS PYOBJECT(obj));
SharedObject Leave(obj, state);
return result;

}
500

int
SharedObject Print(SharedObject *obj, FILE *fp, int �ags)
{
static PyObject *opname = NULL;
PyObject *state;
int result;

state = SharedObject EnterString(obj, "__print__", &opname);
if (state == NULL) 510

return −1;
result = PyObject Print(SharedObject AS PYOBJECT(obj), fp, �ags);
SharedObject Leave(obj, state);
return result;

}

int
SharedObject Compare(SharedObject *a, PyObject *b)
{ 520
static PyObject *opname = NULL;
PyObject *state;
int result;

state = SharedObject EnterString(a, "__cmp__", &opname);
if (state == NULL)

return −1;
result = PyObject Compare(SharedObject AS PYOBJECT(a), b);
SharedObject Leave(a, state);
return result; 530

}

PyObject *
SharedObject RichCompare(SharedObject *a, PyObject *b, int op)
{
char *opname;
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PyObject *state, *result;

switch (op) { 540
case Py LT: opname = "__lt__"; break;
case Py LE: opname = "__le__"; break;
case Py EQ: opname = "__eq__"; break;
case Py NE: opname = "__ne__"; break;
case Py GT: opname = "__gt__"; break;
case Py GE: opname = "__ge__"; break;
default: return NULL; /* cannot happen */
}

state = SharedObject EnterString(a, opname, NULL); 550
if (state == NULL)

return NULL;
result = PyObject RichCompare(SharedObject AS PYOBJECT(a), b, op);
SharedObject Leave(a, state);
return result;

}

int
SharedObject RichCompareBool(SharedObject *a, PyObject *b, int op) 560
{
char *opname;
PyObject *state;
int result;

switch (op) {
case Py LT: opname = "__lt__"; break;
case Py LE: opname = "__le__"; break;
case Py EQ: opname = "__eq__"; break;
case Py NE: opname = "__ne__"; break; 570
case Py GT: opname = "__gt__"; break;
case Py GE: opname = "__ge__"; break;
default: return −1; /* cannot happen */
}

state = SharedObject EnterString(a, opname, NULL);
if (state == NULL)

return −1;
result = PyObject RichCompareBool(SharedObject AS PYOBJECT(a), b, op);
SharedObject Leave(a, state); 580
return result;

}
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A.31 SharedRegion.h

/* SharedRegion.h */
/* Interface for creation and attachment of shared memory regions. */

#ifndef SHAREDREGION H INCLUDED
#de�ne SHAREDREGION H INCLUDED

#include "_core.h"

/* Handle for a shared memory region. */
typedef int SharedRegionHandle ; 10

/* NULL value for a shared memory region handle */
#de�ne SharedRegionHandle NULL (−1)

/* Macro to test for NULL-ness of shared memory region handles */
#de�ne SharedRegionHandle IS NULL(h) (h == SharedRegionHandle NULL)

/* Creates a new shared memory region of the given size.
Returns a handle for the region, or SharedRegionHandle NULL on error.
This function should normally not be called directly - use 20
SharedRegion New() instead (de�ned in Globals.h), which stores
the handle in a global table for cleanup purposes. */

SharedRegionHandle SharedRegion New(size t *size);

/* Destroys a shared memory region. */
void SharedRegion Destroy(SharedRegionHandle h);

/* Attaches a shared memory region. */
void * SharedRegion Attach(SharedRegionHandle h);

30
/* Detaches a shared memory region that is attached at the given address. */
int SharedRegion Detach(void *addr);

#endif
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A.32 SharedRegion.c

/* SharedRegion.c */

#include "SharedRegion.h"
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

SharedRegionHandle
SharedRegion New(size t *size)
{ 10
int id;
struct shmid ds ds;

/* Create the region */
id = shmget(IPC PRIVATE, (int) *size, SHM R | SHM W);
if (id == −1)

return SharedRegionHandle NULL;

/* Query it for its actual size */
if (shmctl(id, IPC STAT, &ds) == −1) { 20

/* Error - remove the region again */
shmctl(id, IPC RMID, NULL);
PyErr SetString(PyExc RuntimeError,

"creation of shared memory region failed");
return SharedRegionHandle NULL;

}
*size = (size t) ds.shm segsz;

return id;
} 30

void
SharedRegion Destroy(SharedRegionHandle h)
{
shmctl(h, IPC RMID, NULL);

}

void *
SharedRegion Attach(SharedRegionHandle handle )
{ 40
void *addr = shmat(handle, 0, 0);
if (addr == (void *) −1) {
/* XXX: Can this really happen? */

PyErr SetString(PyExc RuntimeError,
"attachment of shared memory region failed");

return NULL;
}
return addr;

}
50

int
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SharedRegion Detach(void *addr)
{
return shmdt(addr);

}
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A.33 Spinlock.h

/* Spinlock.h */

#ifndef SPINLOCK H INCLUDED
#de�ne SPINLOCK H INCLUDED

#include "_core.h"

typedef int Spinlock;

/* All these always succeed (if they return). */ 10
void Spinlock Init(Spinlock *spinlock);
void Spinlock Destroy(Spinlock *spinlock);
void Spinlock Acquire(Spinlock *spinlock);
void Spinlock Release(Spinlock *spinlock);

#endif
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A.34 Spinlock.c

/* Spinlock.c */

#include "Spinlock.h"

static inline void acquire(int *mutex)
{

asm volatile (" movl %0,%%eax \n"
"1: lock \n"
" btsl $0, 0(%%eax) \n"
" jc 1b \n" 10
:
:"m"(mutex)
:"eax");

}

static inline void release(int *mutex)
{ 20

asm volatile (" movl %0,%%eax \n"
"1: lock \n"
" andl $0, 0(%%eax) \n"
:
:"m"(mutex)
:"eax");

}

void 30
Spinlock Init(Spinlock *spinlock)
{
*spinlock = 0;

}

void
Spinlock Destroy(Spinlock *spinlock)
{
*spinlock = 0;

} 40

void
Spinlock Acquire(Spinlock *spinlock)
{

acquire(spinlock);
}

void
Spinlock Release(Spinlock *spinlock)
{ 50

release(spinlock);
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}
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A.35 _core.h

/* core.h */
/* Common header �le for the core module. */

#ifndef CORE H INCLUDED
#de�ne CORE H INCLUDED

#include <Python.h>
#include <structmember.h>

#ifdef DEBUG 10
#de�ne LOGF(fmt, args. . .) printf ("%s:%d (%s) " fmt "\n", \

FILE , LINE , FUNCTION , args)
#de�ne LOGS(s) LOGF("%s", s)
#de�ne LOG() LOGF("%s", "")
#else
#de�ne LOGF(fmt, args. . .)
#de�ne LOGS(s)
#de�ne LOG()
#endif

20
/* String constants */
#de�ne S IHEAP "__instanceheap__"
#de�ne S DHEAP "__dataheap__"
#de�ne S SYNCH "__synch__"
#de�ne S ENTER "enter"
#de�ne S LEAVE "leave"
#de�ne S ALLOC "alloc"
#de�ne S REALLOC "realloc"
#de�ne S FREE "free"

30
extern PyObject *ErrorObject;
extern PyObject *TypeMap;

/* These are updated by Process Init() each time a new process is forked */
extern int my pid;
extern int my pindex;

#endif
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A.36 init_core.c

/* init core.c */
/* Initialization of the core module. */

#include "_core.h"
#include "Process.h"
#include "SharedRegion.h"
#include "SharedAlloc.h"
#include "Proxy.h"
#include "SharedHeap.h"
#include "SharedListAndTuple.h" 10
#include "SharedDictBase.h"
#include "SharedObject.h"
#include "share.h"
#include "Address.h"
#include "Monitor.h"
#include "LockObject.h"

PyObject *ErrorObject = NULL;
PyObject *TypeMap = NULL;

20
/* Returns the address of the given object as an Address object. */
static PyObject *
address of(PyObject *null, PyObject *obj)
{
return Address FromVoidPtr(obj);

}

/* Maps a regular type to a shared type and a proxy type */
static PyObject *
map type(PyObject *null, PyObject *args) 30
{
PyObject *tp, *stp, *ptp, *tuple;

/* Parse the arguments, which should be three types */
if (!PyArg ParseTuple(args, "O!O!O!:map_type", &PyType Type, &tp,

&PyType Type, &stp, &PyType Type, &ptp))
return NULL;

/* Build a tuple of the shared type and proxy type */
tuple = Py BuildValue("(OO)", stp, ptp); 40
if (tuple == NULL)

return NULL;

/* Map the regular type to the tuple */
if (PyDict SetItem(TypeMap, tp, tuple)) {

Py DECREF(tuple);
return NULL;

}
/* Also map the shared type to the tuple */
if (PyDict SetItem(TypeMap, stp, tuple)) { 50

Py DECREF(tuple);
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return NULL;
}

Py DECREF(tuple);
Py INCREF(Py None);
return Py None;

}

/* Shares an object and returns a proxy object for it. */ 60
static PyObject *share(PyObject *null, PyObject *obj)
{
SharedObject *shobj;

shobj = ShareObject(obj);
if (shobj == NULL)

return NULL;
return MakeProxy(shobj);

}
70

/* Initializes a recently forked child process */
static PyObject *
init child(PyObject *null, PyObject *noargs)
{
PyObject *map, *values;
int i, len;

if (Process Init()) {
PyErr SetString(ErrorObject, "too many processes");
return NULL; 80

}
map = GetProxyMap();
if (map == NULL)

return NULL;
values = PyMapping Values(map);
if (values == NULL)

return NULL;
len = PySequence Length(values);
for (i = 0; i < len; i++) {

PyObject *item = PySequence GetItem(values, i); 90
assert(Proxy Check(item));
SharedObject SetProxyBit(((ProxyObject *) item)−>referent);
Py DECREF(item);

}
Py INCREF(Py None);
return Py None;

}

/* Handles the death of a child process */
static PyObject * 100
child died(PyObject *null, PyObject *args)
{
int pid, killsignal, status, core�le;

if (!PyArg ParseTuple(args, "iiii:child_died",
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&pid, &killsignal, &status, &core�le))
return NULL;

if (killsignal != 0 | | status != 0)
Process CleanupChild(pid);

Py INCREF(Py None); 110
return Py None;

}

/* Overrides the allocation methods of a type to use
* SharedObject Alloc and SharedObject Free. */
static PyObject *
override allocation(PyObject *null, PyObject *args)
{
PyTypeObject *type;

120
if (!PyArg ParseTuple(args, "O!:override_allocation", &PyType Type, &type))

return NULL;

/* Override tp alloc and tp free; there are no descriptors for these, so
it's only a matter of updating the slots directly. */

type−>tp alloc = SharedObject Alloc;
type−>tp free = SharedObject Free;
/* SharedObject Alloc() and SharedObject Free() don't support

cyclic garbage collection, so the new type can't be
garbage collected */ 130

type−>tp �ags &= �Py TPFLAGS HAVE GC;

Py INCREF(Py None);
return Py None;

}

/* Returns true if the given type overrides getattr ,
getattribute , setattr or delattr . */

static PyObject *
overrides attributes(PyObject *null, PyObject *args) 140
{
PyTypeObject *type;
PyObject *desc = NULL;
PyObject *result = NULL;

if (!PyArg ParseTuple(args, "O!:override_allocation", &PyType Type, &type))
goto Done;

if ((type−>tp setattr != 0 &&
type−>tp setattr != PyBaseObject Type.tp setattr) | | 150
(type−>tp setattro != 0 &&
type−>tp setattro != PyBaseObject Type.tp setattro)) {

/* Overrides setattr / delattr */
result = Py True;
goto Done;

}
if ((type−>tp getattr != 0 &&

type−>tp getattr != PyBaseObject Type.tp getattr)
| | (type−>tp getattr != 0 &&
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type−>tp getattro != PyBaseObject Type.tp getattro)) { 160
/* Overrides getattribute and/or getattr .

The latter is allowed, so we have to �nd out which it is. */
desc = PyObject GetAttrString((PyObject *) type, "__getattribute__");
if (desc==NULL)
goto Done;

if (desc−>ob type == &PyWrapperDescr Type) {
void *wrapped = ((PyWrapperDescrObject *) desc)−>d wrapped;
if (wrapped == (void *) PyBaseObject Type.tp getattro) {
/* Only overrides getattr , which is �ne. */
result = Py False; 170
goto Done;

}
}
result = Py True;
goto Done;

}
result = Py False;

Done:
Py XDECREF(desc); 180
Py XINCREF(result);
return result;

}

static PyObject *
shared getattribute(PyObject *null, PyObject *args)
{
PyObject *self, *name;

if (!PyArg ParseTuple(args, "OO", &self, &name)) 190
return NULL;

return SharedObject GetAttr(self, name);
}

static PyObject *
shared setattr(PyObject *null, PyObject *args)
{
PyObject *self, *name, *value;

if (!PyArg ParseTuple(args, "OOO", &self, &name, &value)) 200
return NULL;

if (SharedObject SetAttr(self, name, value))
return NULL;

Py INCREF(Py None);
return Py None;

}

static PyObject *
shared delattr(PyObject *null, PyObject *args)
{ 210
PyObject *self, *name;

if (!PyArg ParseTuple(args, "OO", &self, &name))
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return NULL;
if (SharedObject SetAttr(self, name, NULL))

return NULL;
Py INCREF(Py None);
return Py None;

}
220

static char address of doc[ ] =
"address_of(obj) -> The object's address in memory" ;
static char map type doc[ ] =
"map_type(tp, stp, ptp)";
static char share doc[ ] =
"share(obj) -> Proxy object for a shared object equal to obj" ;
static char init child doc[ ] =
"init_child()";
static char child died doc[ ] =
"child_died(pid, killsignal, status, corefile)" ; 230
static char override allocation doc[ ] =
"override_allocation(type)";
static char overrides attributes doc[ ] =
"overrides_attributes(type) -> True if type overrides __getattribute__, " \
"__setattr__ or __delattr__";
static char shared getattribute doc[ ] =
"__getattribute__ for shared objects" ;
static char shared setattr doc[ ] =
"__setattr__ for shared objects" ;
static char shared delattr doc[ ] = 240
"__delattr__ for shared objects" ;

/* List of functions de�ned in the module */
static PyMethodDef functions [ ] = {
{"address_of", address of, METH O, address of doc},
{"map_type", map type, METH VARARGS, map type doc},
{"share", share, METH O, share doc},
{"init_child", init child, METH NOARGS, init child doc},
{"child_died", child died, METH VARARGS, child died doc}, 250
{"override_allocation", override allocation, METH VARARGS,
override allocation doc},
{"overrides_attributes", overrides attributes, METH VARARGS,
overrides attributes doc},
{"shared_getattribute", shared getattribute, METH VARARGS,
shared getattribute doc},
{"shared_setattr", shared setattr, METH VARARGS, shared setattr doc},
{"shared_delattr", shared delattr, METH VARARGS, shared delattr doc},
{NULL, NULL} /* sentinel */

}; 260

/* Initialization function for the module (*must* be called init core) */
DL EXPORT(void)
init core(void)
{
PyObject *m, *d, *nulladdr, *type map;
int ok;
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if (Process Init())
goto Error; 270

/* Create the error object for the module */
ErrorObject = PyErr NewException("posh._core.error", NULL, NULL);
if (ErrorObject == NULL)

goto Error;

/* Create the type map */
TypeMap = PyDict New();
if (TypeMap == NULL)

goto Error; 280

/* Ready built-in types */
PyType Ready(&Address Type);
PyType Ready(&SharedHeap Type);
PyType Ready(&SharedListBase Type);
PyType Ready(&SharedTupleBase Type);
PyType Ready(&SharedDictBase Type);
PyType Ready(&Proxy Type);
PyType Ready(&Monitor Type);
PyType Ready(&Lock Type); 290

/* Create the module and get its dictionary */
m = Py InitModule("_core", functions);
if (m == NULL)

goto Error;
d = PyModule GetDict(m);
if (d == NULL)

goto Error;

/* Add symbols to the module */ 300
nulladdr = Address FromVoidPtr(NULL);
if (nulladdr == NULL)

goto Error;
ok = !PyDict SetItemString(d, "null", nulladdr);
Py DECREF(nulladdr);

type map = PyDictProxy New(TypeMap);
if (type map == NULL)

goto Error;
ok = ok && !PyDict SetItemString(d, "type_map", type map); 310
Py DECREF(type map);

ok = ok && !PyDict SetItemString(d, "error", ErrorObject);
ok = ok && !PyDict SetItemString(d, "SharedHeap",

(PyObject *) &SharedHeap Type);
ok = ok && !PyDict SetItemString(d, "SharedListBase",

(PyObject *) &SharedListBase Type);
ok = ok && !PyDict SetItemString(d, "SharedTupleBase",

(PyObject *) &SharedTupleBase Type);
ok = ok && !PyDict SetItemString(d, "SharedDictBase", 320

(PyObject *) &SharedDictBase Type);
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ok = ok && !PyDict SetItemString(d, "Proxy", (PyObject *) &Proxy Type);
ok = ok && !PyDict SetItemString(d, "Monitor", (PyObject *) &Monitor Type);
ok = ok && !PyDict SetItemString(d, "Lock", (PyObject *) &Lock Type);

if (ok)
return;

Error:
Py XDECREF(ErrorObject); 330
Py XDECREF(TypeMap);
if (PyErr Occurred() == NULL)

PyErr SetString(PyExc ImportError, "module initialization failed");
}
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A.37 share.h

/* share.h */

#ifndef SHARE H INCLUDED
#de�ne SHARE H INCLUDED

#include "_core.h"
#include "SharedObject.h"

/* Instantiates a shared object from the given object. */
SharedObject *ShareObject(PyObject *obj); 10

/* Encapsulates a shared object in a proxy object. */
PyObject *MakeProxy(SharedObject *obj);

#endif
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A.38 share.c

/* share.c */

#include "share.h"
#include "Proxy.h"
#include "SharedObject.h"
#include "Address.h"

SharedObject *
ShareObject(PyObject *obj)
{ 10
/* Borrowed references */
PyTypeObject *type = obj−>ob type;
PyObject *shtype;

/* Special-case proxy objects */
if (Proxy Check(obj))

return ((ProxyObject *) obj)−>referent;

/* Special-case singletons None, True and False */
if (obj == Py None) { 20
}
else if (obj == Py True) {
}
else if (obj == Py False) {
}

/* Get the type's shared type from the type map */
shtype = PyDict GetItem(TypeMap, (PyObject *) type);
if (shtype == NULL) {

PyErr Format(ErrorObject, "%.100s instances cannot be shared" , 30
type−>tp name);

return NULL;
}
assert(PyTuple Check(shtype));
assert(PyTuple GET SIZE(shtype) == 2);
shtype = PyTuple GET ITEM((PyObject *) shtype, 0);

/* If the type is its own shared type, the object is already shared. */
if (shtype == (PyObject *) type)

return SharedObject FROM PYOBJECT(obj); 40

/* Instantiate the shared type with the object to get a shared object. */
/* LOGF(�Instantiating %.100s object�,

((PyTypeObject *) shtype)->tp name); */
obj = PyObject CallFunctionObjArgs(shtype, obj, NULL);
if (obj == NULL)

return NULL;
return SharedObject FROM PYOBJECT(obj);

}
50

/* Creates a new proxy object for a shared object */
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static PyObject *
new proxy(SharedObject *obj)
{
/* Borrowed references */
PyObject *pyobj = SharedObject AS PYOBJECT(obj);
PyTypeObject *type = pyobj−>ob type;
PyObject *ptype;

/* Get the shared type's proxy type from the type map */ 60
ptype = PyDict GetItem(TypeMap, (PyObject *) type);
if (ptype == NULL) {

PyErr Format(ErrorObject, "no proxy type for %.100s", type−>tp name);
return NULL;

}
assert(PyTuple Check(ptype));
ptype = PyTuple GET ITEM(ptype, 1);

/* Instantiate the new proxy object */
return PyObject CallFunctionObjArgs(ptype, pyobj, NULL); 70

}

/* Looks in the procy map for a proxy object for the shared object, or
creates a new proxy object if there is none. */

PyObject *
MakeProxy(SharedObject *obj)
{
/* New references */
PyObject *addr = NULL, *proxy = NULL;
/* Borrowed references */ 80
PyObject *map;

map = GetProxyMap();
if (map == NULL)

goto Done;
addr = Address FromVoidPtr(obj);
if (addr == NULL)

goto Done;
proxy = PyObject GetItem(map, addr);
if (proxy != NULL) 90

/* Found an existing proxy object */
goto Done;

/* Clear the KeyError from the failed lookup */
if (!PyErr ExceptionMatches(PyExc KeyError))

goto Done; /* Other exceptions are passed on */
PyErr Clear();

/* Create a new proxy object */
proxy = new proxy(obj); 100
if (proxy != NULL) {

/* Store the new proxy object in the proxy map */
if (PyObject SetItem(map, addr, proxy)) {
Py DECREF(proxy);
proxy = NULL;
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}
}
else {

/* Creation of the proxy object failed. In case the shared object has
no other proxy objects, and no references to it from other shared 110
objects, we should call SharedObject ClearProxyBit() to let it be
reclaimed. */

SharedObject ClearProxyBit(obj);
}

Done:
Py XDECREF(addr);
return proxy;

}
120
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A.39 _proxy.py

# proxy.py

# Submodule of the posh package, de�ning a factory function
# for creating proxy types based on shared types

import types
import core

class ProxyMethod(object):
def init (self, inst, cls, mname): 10

self.proxy inst = inst
self.proxy cls = cls
self.mname = mname
self.cname = cls. name

def str (self):
if self.proxy inst is None:

return "<method '%s' of '%s' objects>" % \
(self.mname, self.cname)

return "<method '%s' of '%s' object at %s>" % \ 20
(self.mname, self.cname, core.address of(self.proxy inst))

repr = str

def call (self, *args, **kwargs):
if self.proxy inst is None:

# Call to unbound proxy method
if (len(args) < 1) or not isinstance(args[0], self.proxy cls):

fmt = "unbound method %s.%s must be called" + \
"with %s instance as first argument" 30

raise TypeError, fmt % (self.cname, self.mname, self.cname)
return args[0]. call method(self.mname, args[1:], kwargs);

else:
# Call to bound proxy method
return self.proxy inst. call method(self.mname, args, kwargs);

class ProxyMethodDescriptor(object):
def init (self, mname):

self.mname = mname 40

def get (self, inst, cls):
return ProxyMethod(inst, cls, self.mname)

def set (self, inst, value):
raise TypeError, "read-only attribute"

method desc types = (type(list. add ), type(list.append),
types.UnboundMethodType ) 50
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def MakeProxyType(reftype):
d = {"__slots__": [ ]}
for attrname in dir(reftype):

if not hasattr( core.Proxy, attrname):
attr = getattr(reftype, attrname)
if type(attr) in method desc types:

d[attrname] = ProxyMethodDescriptor(attrname);
name = reftype. name +"Proxy" 60
return type(name, ( core.Proxy,), d)
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A.40 _verbose.py

# verbose.py

# Submodule of the posh package, de�ning classes for verbose output

all = ["PIDWriter", "VerboseHeap", "VerboseSynch"]

from sys import stdout as stdout
from os import getpid as getpid
import core

10

class PIDWriter(object):
def init (self, output):

self.output = output
self.buf = ""

def write(self, s):
lines = (self.buf+s).split('\n')
if lines:

self.buf = lines[−1] 20
else:

self.buf = ""
for line in lines[:−1]:

self.output.write("[%s] %s\n" % ( getpid(), line.strip()))

class VerboseHeap(object):
def init (self, name, heap, output=None):

object. init (self)
self.name = name 30
self.heap = heap
self.output = output or PIDWriter( stdout)

def alloc(self, size):
self.output.write("%s: Allocating %d bytes" % (self.name, size))
addr, size = self.heap.alloc(size)
self.output.write(" at address %s (size %d).\n" % (addr, size))
return addr, size

def free(self, addr): 40
self.output.write("%s: Freeing memory at address %s.\n" \

% (self.name, addr))
return self.heap.free(addr)

def realloc(self, addr, size):
self.output.write("%s: Reallocating %d bytes from address %s" \

% (self.name, size, addr))
addr, size = self.heap.realloc(addr, size)
self.output.write("to %s (size %d).\n" % (addr, size))
return addr, size 50
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class VerboseSynch(object):
def init (self, name, synch, output=None):

object. init (self)
self.name = name
self.synch = synch
self.output = output or PIDWriter( stdout)

def str(self, x): 60
return "%s object at %s" % (type(x). name , core.address of(x))

def enter(self, x, opname):
self.output.write("%s: Entering %s on %s\n" \

% (self.name, opname, self.str(x)))
if self.synch is None:

rv = None
else:

rv = self.synch.enter(x, opname)
return opname, rv 70

def leave(self, x, opname and rv):
opname, rv = opname and rv
self.output.write("%s: Leaving %s on %s\n" \

% (self.name, opname, self.str(x)))
if self.synch is not None:

self.synch.leave(x, rv)
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A.41 __init__.py

# init .py

# Main script for the posh package.

# Set this to 1 to get verbose output
VERBOSE = 0

# Names imported by from posh import *
all = """
share allow_sharing MONITOR wait waitpid _exit getpid exit sleep 10
forkcall waitall error Lock

""".split()

import core
import proxy
from verbose import *
import signal as signal
import types as types

# Import common process-related symbols into this module. 20
# We will supply our own version of os.fork().
from os import fork as os fork, wait, waitpid, exit, getpid
from sys import exit, stdout as stdout
from time import sleep

# Import some names from the core module
share = core.share
error = core.error
Lock = core.Lock

30
# The default argument for allow sharing()
MONITOR = core.Monitor()

# Argument to allow sharing() that speci�es no synchronization
NOSYNCH = None

if VERBOSE:
# Wrap MONITOR and NOSYNCH in verbose objects
MONITOR = VerboseSynch("Monitor", MONITOR)
NOSYNCH = VerboseSynch("NoSynch", NOSYNCH) 40

class SharedType(type):
"""Meta-type for shared types.
"""
# Shared heaps for instances and auxiliary data structures
instanceheap = core.SharedHeap()
dataheap = core.SharedHeap()

if VERBOSE: 50
# Wrap the heaps in verbose objects
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instanceheap = VerboseHeap("Instance heap", instanceheap )
dataheap = VerboseHeap("Data heap", dataheap )

# Default synchronization policy
synch = MONITOR

# This method gets invoked when the meta-type is called, and
# returns a new shared type.
def new (tp, name, bases, dct): 60

"""Creates a new shared type.
"""
def wrap built in func(func):

"""Wraps a built-in function in a function object.
"""
# XXX: This is not quite satisfactory, since we lose the
# name and doc attributes. Built-in functions
# really should have binding behaviour!
return lambda *args, **kwargs: func(*args, **kwargs)

70
if len(bases) > 1:

raise ValueError, "this meta-type only supports single inheritance"

# Override attribute access
dct["__getattribute__"] = wrap built in func( core.shared getattribute)
dct["__setattr__"] = wrap built in func( core.shared setattr)
dct["__delattr__"] = wrap built in func( core.shared delattr)

# Invoke type's implementation of new
newtype = type. new (tp, name, bases, dct) 80

# Override the allocation methods of the new type
core.override allocation(newtype)
return newtype

# Simulates an attribute lookup on the given class by traversing its
# superclasses in method resolution order and returning the �rst class
# whose dictionary contains the attribute. Returns None if not found.
def type lookup(tp, name): 90

if hasattr(tp, "__mro__"):
# Follow the MRO de�ned by the mro attribute
for t in tp. mro :

if name in t. dict :
return t

else:
# Use the classic left-to-right, depth-�rst rule
if name in tp. dict :

return tp
for t in tp. bases : 100

res = type lookup(t, name)
if res:

return res
return None
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def allow sharing(tp, synch=MONITOR):
"""allow_sharing(tp, synch=None) -> None

Allows sharing of objects of the given type. This must be called prior 110
to any fork() calls. The synch parameter may be None for immutable types,
indicating that no synchronization is needed on these objects, or MONITOR
for objects that desire monitor access semantics.

Instances of shareable types should adhere to the following rules:
* A nonempty __slots__ is not allowed.
* No custom __getattribute__(), __setattr__() or __delattr__() is allowed.
* Extension types need not make room for a dictionary in their object
structure, but they should have a nonzero tp_dictoffset if they want to
support attributes. 120

* No references to other objects should be stored in the object structure
itself, but rather in the object's dictionary using the generic
PyObject_SetAttribute() and friends.

* Extension types should not override the tp_alloc and tp_free slots.
* References to ``self'' should not be stored in a way that makes them
persist beyond the lifetime of the call.

"""

if isinstance(tp, types.ClassType):
raise TypeError, "allow_sharing: old-style classes are not supported" 130

if not isinstance(tp, type):
raise TypeError, "allow_sharing: 1st argument (tp) must be a type"

# Check if we've forked
if globals().get("_has_forked", 0):

raise ValueError, "allow_sharing: this call must be made " +\
"prior to any fork calls"

# Check if the type is already registered
if tp in core.type map: 140

fmt = "allow_sharing: %s objects may already be shared"
raise ValueError, (fmt % tp. name )

# The given type may not override attribute access
# except to provide a getattr hook.
if core.overrides attributes(tp):

fmt = "allow_sharing: %s overrides __getattribute__, " +\
"__setattr__ or __delattr__"

raise ValueError, (fmt % tp. name )
150

# The given type may not have a nonempty slots
tpdir = dir(tp)
if "__slots__" in tpdir and len(tp. slots ):

fmt = "allow_sharing: %s has a nonempty __slots__"
raise ValueError, (fmt % tp. name )

# If the given type contains no dict descriptor, then the type's
# instances has no dictionary, so neither should those of the shared
# type.
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if not "__dict__" in tpdir: 160
d = {'__slots__': [ ]}

else:
d = {}

# Make up a name for the shared type
name = "Shared"+tp. name .capitalize()

# The shared type is produced by inheriting from the shareable type
# using the SharedType meta-type
stp = SharedType(name, (tp,), d) 170
# Assign the synch attribute of the new type
stp. synch = synch

# We also need a proxy type that looks like the shared type
ptp = proxy.MakeProxyType(stp)

# Register the types with the core module and we're done
core.map type(tp, stp, ptp)

180
def init types():

# This function initializes the module with some basic shareable
# types. The function is deleted after it is called.
# Shared versions of the container types list, tuple and dictionary
# are implemented from scratch, and are treated specially.

# Allow the names SharedList, SharedTuple and SharedDict to persist,
# so that users may subtype them if desired.
global SharedList, SharedTuple, SharedDict

190
def seq add(self, other):

return self [:]+other

def seq radd(self, other):
return other+self [:]

def seq mul(self, count):
return self [:]*count

def seq contains(self, item): 200
for x in self :

if x == item:
return 1

return 0

class SharedList( core.SharedListBase):
"""List type whose instances live in shared memory."""
metaclass = SharedType
slots = [ ]

210
add = seq add
radd = seq radd
mul = seq mul



APPENDIX A. SOURCE LISTING 211

rmul = seq mul
contains = seq contains

def iadd (self, other):
self.extend(other)
return self

220
def imul (self, count):

lr = range(len(self))
for i in range(count−1):

for j in lr:
self.append(self [j])

return self

def getslice (self, i, j):
indices = range(len(self))[i:j]
return [self [i] for i in indices] 230

def count(self, item):
result = 0
for x in self :

if x == item:
result += 1

return result

def extend(self, seq):
if seq is not self : 240

# Default implementation, uses iterator
for item in seq:

self.append(item)
else:

# Extension by self, cannot use iterator
for i in range(len(self)):

self.append(self [i])

def index(self, item):
for i in range(len(self)): 250

if self [i] == item:
return i

raise ValueError, "list.index(x): x not in list"

def reverse(self):
l = len(self) // 2
for i in range(l):

j = −i−1
# A traditional swap does less work than
# a, b = b, a � although it is less elegant. . . 260
tmp = self [i]
self [i] = self [j]
self [j] = tmp

class SharedTuple( core.SharedTupleBase):
"""Tuple type whose instances live in shared memory."""
metaclass = SharedType
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slots = [ ]

add = seq add 270
radd = seq radd
mul = seq mul
rmul = seq mul
contains = seq contains

def getslice (self, i, j):
indices = range(len(self))[i:j]
return tuple([self [i] for i in indices])

def str (self): 280
# Tuples cannot be recursive, so this is easy
# to implement using Python code
items = map(repr, self)
return "("+", ".join(items)+")"

repr = str

class SharedDict( core.SharedDictBase):
"""Dictionary type whose instances live in shared memory."""
metaclass = SharedType 290
slots = [ ]

SharedListProxy = proxy.MakeProxyType(SharedList)
SharedTupleProxy = proxy.MakeProxyType(SharedTuple)
SharedDictProxy = proxy.MakeProxyType(SharedDict)

# This maps list to SharedList and so on - this is special, since
# these shared types are not subtypes of their shareable equivalents,
# as is normally the case.
core.map type(list, SharedList, SharedListProxy) 300
core.map type(tuple, SharedTuple, SharedTupleProxy)
core.map type(dict, SharedDict, SharedDictProxy)

# Produce basic immutable shared types
for t in int, �oat, long, complex, str, unicode, Lock:

allow sharing(t, synch=None)

init types()
del init types

310

# De�ne and set signal handler for SIGCHLD signals
def on SIGCHLD(signumber, frame):

# Reinstall the signal handler
signal.signal( signal.SIGCHLD, on SIGCHLD)
try:

# Collect the pid and status of the child process that died
pid, status = wait()
# Lower 7 bits of status is the signal number that killed it
killsignal = status & 0x7F 320
# 8th bit is set if a core �le was produced
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core�le = status & 0x80
# High 8 bits is the exit status (on normal exit)
status = (status >> 8) & 0xFF
core.child died(pid, killsignal, status, core�le)

except OSError:
# We don't know which process died, so we have to assume
# that it exited normally and left no garbage
pass

330
signal.signal( signal.SIGCHLD, on SIGCHLD)

# Version of fork() that works with posh
def fork():

"""Posh's version of os.fork().

Use this instead of os.fork() - it does the same.
"""
global has forked 340

pid = os fork()
has forked = 1
if not pid:

# Child process
core.init child()

return pid

def forkcall(func, *args, **kwargs): 350
"""forkcall(func, *args, **kwargs) -> pid of child process

Forks off a child process that calls the first argument with
the remaining arguments. The child process exits when the call
to func returns, using the return value as its exit status.

The parent process returns immediately from forkcall(), with
the pid of the child process as the return value.
"""
pid = fork() 360
if not pid:

exit(func(*args, **kwargs))
return pid

def waitall(pids=None):
"""waitall([pids]) -> None

Waits for all the given processes to termintate.
If called with no arguments, waits for all child processes to terminate. 370
"""
if pids is None:

try:
while 1:

wait()
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except OSError:
pass

else:
for pid in pids:

try: 380
waitpid(pid, 0)

except OSError:
pass
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